• Title/Summary/Keyword: Ultrasonic Material

Search Result 894, Processing Time 0.028 seconds

Study on the Material Characteristic of Baekeuikwaneum (the White-Robed Buddhist Goddess of Mercy) Wall-Painting of Bogwangmyungjun in Wibongsa, Wanju (완주 위봉사보광명전 백의관음벽화의 재료학적 특성 연구)

  • Kim, Young Sun;Lee, Sang Jin;Choi, In Sook;Jin, Byung Hyuk;Lee, Hwa Soo
    • Journal of Conservation Science
    • /
    • v.30 no.1
    • /
    • pp.55-65
    • /
    • 2014
  • On this studyed, the Wibongsa BoGwangMyungJun BaekEuiKwanEum wall-painting was conservation of Scientific research ahead. This study carried out Grain size analysis, SEM-EDS, XRD, P-XRF, FT-IR and ultrasonic exploration for wall-painting. As a result, walls layer used to mineral particles size was mixing the medium-texture and fine texture. painting layers pigments used to base paintings was ocher, white pigments was hobun, red pigments was suckganju, green pigments was suckruk. Also BackuiKannon wall-painting walls damage reason of that was long-term physical shocks. painting layers damage was include detachment or powders. it is affected by temperature and humidity. Therefore in the future conservation of wall-paintings through scientific analysis based on such data, conservation processing is performed through the preservation and enhance the stability of the paintings as a basis for the conservation of management can be utilized.

Application of Bispectral Analysis to Estimate Nonlinear Acoustic Parameter (음향 비선형 파라미터의 추정을 위한 바이스펙트럼 해석법의 적용)

  • Kim, K.C.;Jhang, K.Y.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.2
    • /
    • pp.85-92
    • /
    • 1999
  • The fact that material degradation can be evaluated by measuring nonlinear acoustic effect has been proposed by previous studies. The most conventional method to measure nonlinear acoustic effect is to measure the absolute magnitude of fundamental and $2^{nd}$ order harmonic frequency component in the propagated ultrasonic wave. For this aim, power spectral analysis technique has been used widely. However, the power spectral analysis has fatal disadvantage that the gaussian additive noise superimposed in the wave signal remains in the power spectrum domain. Moreover, the magnitude of $2^{nd}$ order harmonic frequency component generated by nonlinear effect is so small that it may be suppressed by the noise remained in the power spectrum. In order to overcome this problem, this paper proposes an alternative method using bispectrum analysis, which can reduce the effect of addictive gaussian noise and. the nonlinear parameter can be obtained more stably. Simulations showed that the proposed method can obtain the value of nonlinear parameter near to the true value in the case of low SNR signal. Also, in order to confirm the usefulness of our method in actual case, we compared the nonlinear parameter obtained by using both of power spectral and bispectral analysis for several specimen intentionally degraded by fatigue load.

  • PDF

Evaluation of Corrosion Fatigue Characteristics of 12Cr Steel Using Backward Radiated Ultrasound (후방복사된 초음파를 이용한 12Cr강 부식 피로특성 평가)

  • Kwon, Sung-Duk;Yoon, Seok-Soo;Song, Sung-Jin;Bae, Dong-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.5
    • /
    • pp.397-401
    • /
    • 2000
  • The corrosion-fatigue characteristics of the 12Cr steel, which is widely used in fossil power plants as a turbine blade material, are evaluated nondestructively by use of the Rayleigh surface wave. In this study, the frequency dependency of the Rayleigh surface wave is investigated indirectly by measuring the angular dependency of the backward radiation of the incident ultrasonic wave in the aged specimens, and then compared to the corrosion-fatigue characteristics. The width of the backward radiation profile decreases as the increase of the aging temperature, which seems to result from the increase of the effective degrading layer thickness. This parameter also shows an inversely proportionality to the exponent, m, in the Paris law which predicts the crack size increasement due to fatigue. The result observed in this study demonstrates high potential of the backward radiated ultrasound as a tool for the nondestructive evaluation of the corrosion-fatigue characteristics of the aged materials.

  • PDF

Usefulness of Cytologic Study of Intraoperative Suction Fluid in Brain Tumors (수술시 뇌종양 흡인액의 세포학적 검사의 유용성)

  • Lee, Hye-Kyung;Lee, Hyung-Jin;Lee, Eun-Hee;Kim, Hee-Jung;Lee, Il-Woo
    • The Korean Journal of Cytopathology
    • /
    • v.13 no.2
    • /
    • pp.66-69
    • /
    • 2002
  • In diagnosing a brain tumor, it is essential to obtain samples from many areas of the tumor. Although there are reports about the suitability of material obtained by cavitron ultrasonic surgical aspirator(CUSA), there is a paucity of reports regarding conventional intraoperative suction. This study was performed to evaluate the usefulness of the suction fluid and the effect of different hemolytic fixatives. Intraoperative suction fluid was obtained from 2 pituitary adenomas and 2 choroid plexus carcinomas. In two cases of mixed astro-oligodendroglioma, one of glioblastoma multiforme and 3 of meningioma, the fluid was collected by CUSA. Each sample was divided into four bottles for the different fixatives such as 0.1N HCI, 10% acetic acid, 95% alcohol, and no additive. All cases were evaluated by the both cytologic smear and cell block preparations, and were reviewed with concomitant histologic diagnosis. The result showed a good correlation between the cytologic study and the histologic diagnosis and 95% alcohol was found to be superior to other fixatives in ceil preservation.

A STUDY ON THE DIFFERENCE OF THE SAGITTAL CONDYLAR GUIDANCE BY SEMI-ADJUSTABLE ARTICULATOR AND AXIOGRAPH (반조절성교합기와 Axiograph를 이용한 전방시상과로각 차이에 관한 연구)

  • Park, Geon-Ho;Lee, Sung-Bok;Bak, Jin;Choi, Dae-Gyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.5
    • /
    • pp.696-705
    • /
    • 2007
  • Statement of problem: In the Protar articulator, the models are almost parallel with the Camper's plane. The ultrasonic-based ARCUSdigma system is basis for the determination of dynamic function parameters with so-called "articulator related registration". Purpose: The purpose of this study was to compare the sagittal condylar guidance angles found by use of the wax protrusive records in a semi-adjustable articulator(KaVo Protar 7) with those found by use of the Axiograph (ARCUSdigma). 83 volunteers with intact dentition participated in this study after obtainment of informed consent. Material and method: The sagittal condylar guidance angles were measured and estimated statistically by semi-articulator and Axiograph. All the readings were in degrees. No control was used in this project. To test whether there was a significant difference between the 2 independent samples, paired t-test and Kruskal-Wallis test were carried out(p=.05). Results: 1. The mean results for the wax protrusive records were as follow: right side (32.65 degrees, SD 16.48); left side (33.27 degrees, SD 17.49). 2. The mean results for the Axiograph were as follow: right side (32.26 degrees, SD 7.00); left side (33.07 degrees, SD 7.58). 3. There was no statistical difference on the wax protrusive records and Axiograph(p>0.05). Conclusion: Both methods of wax protrusive records and Axiograph are clinically acceptable for measuring the sagittal condylar guidance angles in semi-adjustable articulators.

DEFECT DETECTION WITHIN A PIPE USING ULTRASOUND EXCITED THERMOGRAPHY

  • Cho, Jai-Wan;Seo, Yong-Chil;Jung, Seung-Ho;Kim, Seung-Ho;Jung, Hyun-Kyu
    • Nuclear Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.637-646
    • /
    • 2007
  • An UET (ultrasound excited thermography) has been used for several years for a remote non-destructive testing in the automotive and aircraft industry. It provides a thermo sonic image for a defect detection. A thermograhy is based On a propagation and a reflection of a thermal wave, which is launched from the surface into the inspected sample by an absorption of a modulated radiation. For an energy deposition to a sample, the UET uses an ultrasound excited vibration energy as an internal heat source. In this paper the applicability of the UET for a realtime defect detection is described. Measurements were performed on two kinds of pipes made from a copper and a CFRP material. In the interior of the CFRP pipe (70mm diameter), a groove (width - 6mm, depth - 2.7mm, and length - 70mm) was engraved by a milling. In the case of the copper pipe, a defect was made with a groove (width - 2mm, depth - 1mm, and length - 110 mm) by the same method. An ultrasonic vibration energy of a pulsed type is injected into the exterior side of the pipe. A hot spot, which is a small area around the defect was considerably heated up when compared to the other intact areas, was observed. A test On a damaged copper pipe produced a thermo sonic image, which was an excellent image contrast when compared to a CFRP pipe. Test on a CFRP pipe with a subsurface defect revealed a thermo sonic image at the groove position which was a relatively weak contrast.

Optimization of head mass for tonpilz transducer using finite element method (유한요소법을 이용한 tonpilz 트랜스듀서의 head mass 최적화)

  • Seo, Jin-Won;Choi, Kyoon;Lee, Ho-Yong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.4
    • /
    • pp.140-144
    • /
    • 2015
  • Effects of the shape, the size and the material of head mass on performances of tonpilz transducer were studied with a finite element method. The shape of head mass was changed with an angle between symmetric axis and side of head mass of transducer from 0 to 60 degree. As a result of the simulations, the bandwidth leached to 86.4 % at 35.5 degree in case of Al head mass. The size of head mass showed a decrease in the power of transducer with little change of bandwidth. For the Ti head mass, the transmitted power showed 100 % increase with a bandwidth of 88.1 % even though the weight of the head mass increased to 167 % of Al. This can be attributed to the mechanical properties like elastic modulus of Ti relative to Al.

Very long life fatigue behaviors of 16Mn steel and welded joint

  • Liu, Yongjie;He, Chao;Huang, Chongxiang;Khan, Muhammad K.;Wang, Qingyuan
    • Structural Engineering and Mechanics
    • /
    • v.52 no.5
    • /
    • pp.889-901
    • /
    • 2014
  • Very long life fatigue tests were carried out on 16Mn steel base metal and its welded joint by using the ultrasonic fatigue testing technique. Specimen shapes (round and plate) were considered for both the base metal and welded joint. The results show that the specimens present different S-N curve characteristics in the region of $10^5-10^9$ cycles. The round specimens showed continuously decreasing tendency while plate specimens showed a steep decreasing step and an asymptotic horizontal one. The fatigue strength of round specimen was found higher than plate specimen. The fatigue strength of as-welded joint was 45.0% of the base material for butt joint and 40% for cruciform as-welded joint. It was found that fracture can still occur in butt joint beyond $5{\times}10^6$ cycles. The cruciform joint has a fatigue limit in the very long life fatigue regime ($10^7-10^9$ cycles). Fatigue strength of butt as-welded joint was much higher as compared to cruciform as-welded joint. Improvement in fatigue strength of welded joint was found due to UPT. The observation of fracture surface showed crack mainly initiated from welded toe at fusion areas or geometric discontinuity sites at the surface in butt joint and from welded toe in cruciform joint.

Dynamic Magnetostriction Characteristics of an Fe-Based Nanocrystalline FeCuNbSiB Alloy

  • Chen, Lei;Li, Ping;Wen, Yumei
    • Journal of Magnetics
    • /
    • v.16 no.3
    • /
    • pp.211-215
    • /
    • 2011
  • The dynamic magnetostriction characteristics of an Fe-based nanocrystalline FeCuNbSiB alloy are investigated as a function of the dc bias magnetic field. The experimental results show that the piezomagnetic coefficient of FeCuNbSiB is about 2.1 times higher than that of Terfenol-D at the low dc magnetic bias $H_{dc}$ = 46 Oe. Moreover, FeCuNbSiB has a large resonant dynamic strain coefficient at quite low Hdc due to a high mechanical quality factor, which is 3-5 times greater than that of Terfenol-D at the same low $H_{dc}$. Based on such magnetostriction characteristics, we fabricate a new type of transducer with FeCuNbSiB/PZT-8/FeCuNbSiB. Its maximum resonant magnetoelectric voltage coefficient achieves ~10 V/Oe. The ME output power reaches 331.8 ${\mu}W$ at an optimum load resistance of 7 $k{\Omega}$ under 0.4 Oe ac magnetic field, which is 50 times higher than that of the previous ultrasonic-horn-substrate composite transducer and it decreases the size by nearly 86%. The performance indicate that the FeCuNbSiB/PZT-8/FeCuNbSiB transducer is promising for application in highly efficient magnetoelectric energy conversion.

Performance of cement-stabilized sand subjected to freeze-thaw cycles

  • Jumassultan, Assel;Sagidullina, Nazerke;Kim, Jong;Ku, Taeseo;Moon, Sung-Woo
    • Geomechanics and Engineering
    • /
    • v.25 no.1
    • /
    • pp.41-48
    • /
    • 2021
  • In cold regions, the integrity of the infrastructures built on weak soils can be extensively damaged by weathering actions due to the cyclic freezing and thawing. This damage can be mitigated by exploiting soil stabilization techniques. Generally, ordinary Portland cement (OPC) is the most commonly used binding material for investigating the chemo-hydromechanical behavior. However, due to the environmental issue of OPC producing a significant amount of carbon dioxide emission, calcium sulfoaluminate (CSA) cement can be used as one of the eco-sustainable alternatives. Although recently several studies have examined the strength development of CSA treated sand, no research has been concerned about CSA cement-stabilized sand affected by cyclic freeze and thaw. This study aims to conduct a comprehensive laboratory work to assess the effect of the cyclic freeze-thaw action on strength and durability of CSA cement-treated sand. For this purpose, unconfined compressive strength (UCS) and ultrasonic pulse velocity (UPV) tests were performed on the stabilized soil specimens cured for 7 and 14 days which are subjected to 0, 1, 3, 5, and 7 freeze-thaw cycles. The test results show that the strength and durability index of the samples decrease with the increase of the freeze-thaw cycles. The loss of the strength and durability considerably decreases for all soil samples subjected to the freeze-thaw cycles. Overall, the use of CSA as a stabilizer for sandy soils would be an eco-friendly option to achieve sufficient strength and durability against the freeze-thaw action in cold regions.