• Title/Summary/Keyword: Ultrasonic Characteristic

Search Result 187, Processing Time 0.027 seconds

Computational aspects of guided wave based damage localization algorithms in flat anisotropic structures

  • Moll, Jochen;Torres-Arredondo, Miguel Angel;Fritzen, Claus-Peter
    • Smart Structures and Systems
    • /
    • v.10 no.3
    • /
    • pp.229-251
    • /
    • 2012
  • Guided waves have shown a great potential for structural health monitoring (SHM) applications. In contrast to traditional non-destructive testing (NDT) methodologies, a key element of SHM approaches is the high process of automation. The monitoring system should decide autonomously whether the host structure is intact or not. A basic requirement for the realization of such a system is that the sensors are permanently installed on the host structure. Thus, baseline measurements become available that can be used for diagnostic purposes, i.e., damage detection, localization, etc. This paper contributes to guided wave-based inspection in anisotropic materials for SHM purposes. Therefore, computational strategies are described for both, the solution of the complex equations for wave propagation analysis in composite materials based on exact elasticity theory and the popular global matrix method, as well as the underlying equations of two active damage localization algorithms for anisotropic structures. The result of the global matrix method is an angular and frequency dependent wave velocity characteristic that is used subsequently in the localization procedures. Numerical simulations and experimental investigations through time-delay measurements are carried out in order to validate the proposed theoretical model. An exemplary case study including the calculation of dispersion curves and damage localization is conducted on an exemplary unidirectional composite structure where the ultrasonic signals processed in the localization step are simulated with the spectral element method. The proposed study demonstrates the capabilities of the proposed algorithms for accurate damage localization in anisotropic structures.

Synthesis and Characterization of Titania-Partially-Stabilized Zirconia by Ultrasonic Spray Pyrolysis (초음파분무열분해법에 의한 TPSZ의 합성 및 특성)

  • Seo, Ki-Lyong;Ri, Chang-Seop
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.6
    • /
    • pp.592-599
    • /
    • 2000
  • The fine particles of binary ceramic composite of titania-partially-stabilized zirconia(TPSZ) were synthesized by ultrasonic spray pyrolysis at the various temperatures, compositions and concentrations and the effects of process factors for synthesis on the characteristics of fine particles were discussed. The starting salt solutions were prepared to have the ionic concentrations of 0.025~0.1 M aqueous solutions. The fine particles were prepared to have the compositions of 90~97.5 wt% of $ZrO_2$ and 2.5~10 wt% of $TiO_2$. The temperatures for particle synthesis were regulated to be 400~550$^{\circ}C$ as a drying zone, 800~1100$^{\circ}C$ as a pyrolysis zone. The produced fine particles were collected by a wet process and analyzed to investigate characteristic properties after being dried. The compositions of ceramic fine particles were determined by Inductively Coupled Plasma-Atomic Emission Spectroscopy(ICP-AES) technique and phases, morphologies and particle sizes of those were investigated by Raman Spectroscopy, X-ray diffraction(XRD), Scanning Electron Microscopy(SEM), Transmission Electron Microscopy(TEM) and Particle Size Analyzer(PSA) techniques.

  • PDF

Electrode bonding method and characteristic of high density rechargeable battery using induction heating system (유도 가열 접합 시스템을 이용한 대용량 이차전지 전극의 접합 방법 및 특성)

  • Kim, Eun-Min;Kim, Shin-Hyo;Hong, Won-Hee;Cho, Dae-Kweon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.688-697
    • /
    • 2014
  • In this study, electrode bonding technology needed for high density of rechargeable battery is studied, which is recently researched for electric vehicle, the small leisure vessel. For the alternative overcoming the limit of stacking amount able to be stacked by conventional ultrasonic welding, the low temperature bonding method, eligible for minimum of degeneration of chemical activator on the electrode surface which is generated by thermal effect as well as the increase of conductivity and tension strength caused by electrode bonding using filler metal, not using conventional direct heating on the electrode material method, is studied. Specifically to say, recently used more generally the ultrasonic welding and spot welding method are not usable for satisfying stable electric conductivity and bonding strength when much electrode is stacking bonded. If the electrical power is unreasonably increased for the welding, due to the effect of welding temperature, deformation of electrode and activating material degeneration are caused, and after the last packaging, decline of electrical output and generating heat cause to reduce stability of battery. Therefore, in this study, induction heating system bonding method using high frequency heating and differentiated electrode method using filler metal pre-treatment of hot dipping are introduced.

Conversion Characteristics on Beef-Tallow and Sunflower Oil Blend Biodiesel and its Treatment Method to Reduce Kinematic Viscosity (우지-해바라기유 오일혼합 바이오디젤의 전환 특성과 동점도 처리에 따른 오일혼합 바이오디젤의 동점도 변화 특성)

  • Woo, Duk-Gam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.380-389
    • /
    • 2020
  • The conversion characteristics and fuel properties for producing biodiesel (BD) by blending beef-tallow, an animal waste resource with a high-saturated fatty acid content, and sunflower-oil, a vegetable oil with a high-unsaturated fatty acid content, were investigated. For this investigation, the effects of the control factors, such as the oil-blend ratio and methanol-to-oil molar ratio, on the fatty acid methyl ester and BD production yield were also investigated. The kinematic viscosity reduction effects of BD using heating and ultrasonic irradiation were verified, and the optimal temperature of each BD-diesel fuel blend for reducing the kinematic viscosity was derived using the correlation equation. As a result, the optimal conditions for producing blended biodiesel were verified to be TASU7 and a methanol-to-oil molar ratio of 10:1. The analysis results of the fuel properties of TASU7 satisfied the BD quality standard; hence, the viability of BD blended with waste tallow as fuel was verified. The experimental results on the kinematic viscosity reduction showed that heating is more effective in reducing the kinematic viscosity because it took less time than ultrasonic irradiation, and the equipment was cheaper and more straightforward than the ultrasonic irradiation method.

Development of a Chest-wearable Walking Rehabilitation Robot (가슴 착용형 보행 재활로봇의 개발)

  • Kim, Hyun;Kwon, Jeong-Gwan;Song, Sang-Young;Kang, Seok-Il;Kim, Jung-Yup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.5
    • /
    • pp.393-400
    • /
    • 2015
  • This paper describes the development of a chest-wearable robot that can efficiently perform self walking rehabilitation without a helper. The features of the developed robot are divided into three parts. First, as a mechanical characteristic, the conventional elbow crutch is attached at the forearm. However, the proposed robot is attached to the patient's chest, enabling them to feel free to use their hands and eliminate the burden of the arms. Second, as a characteristic of the driving algorithm, pressure sensors attached to the chest automatically perceive the patient's walking intention and move the robot-leg thereafter. Also, for safety, it stops operating when an obstacle is found in front of the patient by using ultrasonic sensors and generates a beeping sound. Finally, by using the scotch yoke mechanism, supporting legs are moved up and down using a rotary servo motor without excessive torque that is generated by large ground reaction forces. We showed that the developed robot can effectively perform self walking rehabilitation through walking experiments, and its performance was verified using Electromyograph (EMG) sensors.

Design of High-efficiency Power Amplifier System for High-directional Speaker (고지향성 스피커를 위한 새로운 전력 증폭기 설계)

  • Kim, Jin-Young;Kim, In-Dong;Moon, Wonkyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.8
    • /
    • pp.1215-1221
    • /
    • 2017
  • Parametric array transducers are used for highly directional speaker in an air environments. Piezoelectric micromachined ultrasonic transducers for parametric array transducers need DC-biased voltage driving signals in order to get high-directional quality-sound features. The existing power amplifier such as class A amplifiers has low efficiency and require large volume heatsinks. To overcome the above-mentioned disadvantages of the conventional amplifier, this paper proposes a new power amplifier system. The proposed power amplifier system ensures high linearity of output characteristic by utilizing the push-pull class B type amplifier. Furthermore, the proposed power amplifier system gets high efficiency because it contains the DC-DC converter-type power supply which can perform energy recovery and envelope tracking function. Also the paper suggests the detailed circuit topology. Its characteristics are verified by the detailed experimental results.

Damage propagation in CFRP laminates subjected to low velocity impact and static indentation

  • Aoki, Yuichiro;Suemasu, Hiroshi;Ishikawa, Takashi
    • Advanced Composite Materials
    • /
    • v.16 no.1
    • /
    • pp.45-61
    • /
    • 2007
  • This paper describes a damage accumulation mechanism in cross-ply CFRP laminates $[0_2/90_2]_{2S}$ subjected to out-of-plane loading. Drop-weight impact and static indentation tests were carried out, and induced damage was observed by ultrasonic C-scan and an optical microscope. Both tests gave essentially the same results for damage modes, sizes, and load-deformation history. First, a crack occurred in the bottom $0^{\circ}$ layer accompanying some delamination along the crack caused by bending stress. Then, transverse cracks occurred in the middle $90^{\circ}$ layer with decreasing contact force between the specimen and the indenter. Measured local strains near the impact point showed that the stress state changed from a bending dominant state to an in-plane tensile dominant state. A cohesive interface element was used to simulate the propagation of multiple delaminations and transverse cracks under static indentation. Two types of analytical models are considered, one with multiple delaminations and the other with both multiple delaminations and transverse cracks. The damage obtained for the model with only multiple delaminations was quite different from that obtained from the experiment. However, the results obtained from the model with both delaminations and transverse cracks well explain the characteristics of the damage obtained in the experiment. The existence of the transverse cracks is essential to form the characteristic impact damage.

Time-Frequency Analysis of Lamb wave mode (램파모드의 시간-주파수 해석)

  • 박익근;안형근
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.1
    • /
    • pp.133-140
    • /
    • 2001
  • Recently, to assure the integrity of a structural components such as piping pressure vessels and thinning structure, Lamb wave inspection technique has been used in material evaluation. It is very important to select the optimal Lamb wave mode and to analyze the signal accurately because of its unique dispersion properties grnerating several modes within the speci-men. It this study, the feasibility of material evaluation applications using wavelet analysis of Lamb wave has been veir-fied experimentally. These results show as follows; 1)dispersion characteristic of each mode in dispersion curve is demon-strated that A0 mode propagating material surface is useful mode having the lest energy loss and not sensitive to surface condition. 2) it can be detected even the micro defect ($1\times2mm$) fabricated in ultrasonic probe flaw distance (290mm) to axis direction. 3) the wavelet transform which is called "time-frequency analysis" shows the Lamb wave propagation due to the change of materials characterization can be evaluated at each frequency and experimental group velocity of Lamb wave agrees quite well with that of simulated dispersion curve.ion curve.

  • PDF

Field monitoring of boundary layer wind characteristics in urban area

  • Li, Q.S.;Zhi, Lunhai;Hu, Fei
    • Wind and Structures
    • /
    • v.12 no.6
    • /
    • pp.553-574
    • /
    • 2009
  • This paper presents statistical analysis results of wind speed and atmospheric turbulence data measured from more than 30 anemometers installed at 15 different height levels on 325 m high Beijing Meteorological Tower and is primarily intended to provide useful information on boundary layer wind characteristics for wind-resistant design of tall buildings and high-rise structures. Profiles of mean wind speed are presented based on the field measurements and are compared with empirical models' predictions. Relevant parameters of atmospheric boundary layer at urban terrain are determined from the measured wind speed profiles. Furthermore, wind velocity data in longitudinal, lateral and vertical directions, which were recorded from an ultrasonic anemometer during windstorms, are analyzed and discussed. Atmospheric turbulence information such as turbulence intensity, gust factor, turbulence integral length scale and power spectral densities of the three-dimensional fluctuating wind velocity are presented and used to evaluate the adequacy of existing theoretical and empirical models. The objective of this study is to investigate the profiles of mean wind speed and atmospheric turbulence characteristics over a typical urban area.

Interpretation for Band-Type Indication on Radiography of 9% Ni Steel Welds for LNG Storage Tanks (액화천연가스 저장탱크 9% 니켈강 용접부의 방사선투과시험 필름에 나타나는 밴드형상의 지시 해석)

  • Lee, Seung-Hyun;Lee, Seung-Rim;Lee, Young-Soon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.5
    • /
    • pp.479-483
    • /
    • 2010
  • 9% nickel alloy steels used for LNG, cryogenic liquid, storage tank are welded with dissimilar Inconel or Hastelloy welding rod and the weldment shows similar characteristic with the dissimilar metal weld of low carbon steel and austenitic stainless steel. Band type indications are sometimes shown on the film during radiography test of the weldments. Thus this study identified whether the indications are non-relevant indications through material, radiographic test, ultrasonic test, liquid penetrant test and microstructure analysis and also proposed radiography film interpretation and cause of band type indications.