Emission of ultrasonic vibration to turbulent flow promotes the turbulence generation due to the resonantly oscillating pressure field and thereby induced cavitation. In addition, ultrasonic vibration is well transmitted through water and not dissipated easily so that the micro-bubbles involved in the fluid induce the gaseous cavitation if the bubbles are resonated with the ultrasonic field. In the present study, we found through LDV measurement that the gaseous cavitation induced by ultrasonic vibration to CO$_2$saturated water flow in the rectangular cross-sectioned straight duct enhances turbulence much more than the case of non-ultrasonic or normal ultrasonic conditions without gaseous cavitation. We also found that the fluctuating velocity component induced by emitting the ultrasonic vibration in normal direction of a rectangular channel flow can be redistributed to stream-wise component by the agitation of gaseous cavitation.
Surface and edge finishing processes are important technological operations of in parts machining. Quality of the finished parts directly affect the performance of the whole product. Especially, edge quality, which depends on burr control, is extremely important. Burrs are undesirable projections of the material beyond the edge of the workpiece. A number of deburring processes have been developed such as barreling, brushing, chemical methods etc. But, there are only few publications in the area of applying ultrasonics to deburring. When ultrasonic vibration propagates in the liquid medium, a large number of bubbles are formed. These bubbles generate an extremely strong force, which can be used to remove burrs. Cavitation is used as a term to describe the erosion of parts caused by the action of cavities in liquid. The object of this study is to analyze the effects of ultrasonic cavitation in the deburring process. For this purpose, we introduce a new ultrasonic cavitation method, which efficiently removes the burrs. Experimental parameters to verify the deburring effects of ultrasonic cavitations are ultrasonic power, amplitude, distant of the transducer from the workpiece, deburring time and abrasive. It has been shown that deburring with ultrasonic cavitation in water is effective to burrs.
Ultrasonic vibrator is an equipment which atomizes and homogenization the oils by breaking the oil particles with ultrasonic cavitation, and would improve the properties. The present study deal with the ultrasonic breaking systems which recycle the shipborne waste oil into usable oil to be burnt. The first place, experimental studies were carried out to investigate the homogenizing effect of the waste oils by ultrasonic cavitation. Variation of the properties(viscosity, specific gravity and pH) and the matrix structures for the various shipborne waste oils were interpreted to analyse the breaking, dispersion effects by ultrasonic cavitation. The experimental results can be useful to the development of waste oil disposing systems.
Ultrasonic cavitation is a physical phenomenon that generates and collapses microbubbles in media (mainly fluids) under conditions of strong ultrasonic irradiation. In this study, changes in the ultrasonic acoustic characteristics of bubble clouds in relation to ultrasonic irradiation were observed by the quantitative evaluation of cavitation yields. Concave-type single ultrasonic transducers with center frequencies of 500 kHz and 1.1 MHz were used to produce cavitation, and 2.25 MHz interference ultrasonic waves that would traverse any bubble clouds generated were used to analyze the cavitation. The parameters used for the evaluation of cavitation yields (changes in the center frequency, attenuation characteristics, and the propagation time of penetrating waves) were analyzed in relation to the cavitation-generating conditions (irradiation intensity, excitation signal, and center frequency). On the basis of these results, correlations between the changes in the center frequency and irradiation intensity were identified. Although the correlation coefficient was low, notable changes were observed in the center frequency under certain irradiation conditions. Attenuation trends in the interference ultrasonic waves showed high correlations with all the irradiation conditions, and it was noted that these trends were not affected by the forms of cavitation generated. No differences in the propagation time were observed among different irradiation conditions. These findings suggest that bubble yields can be quantitatively evaluated effectively by evaluating the diverse irradiation conditions and that such a quantitative evaluation could be used to study the basic cavitation phenomenon occurring in high-intensity ultrasonic wave treatment.
Pipes operating in the seawater environment faces cavitation degradation and corrosion of the metallic component, as well as a negative synergistic effect. Cavitation degradation shows the mechanism by which materials deteriorate by causing rapid change of pressure or high-frequency vibration in the solution, and introducing the formation and explosion of bubbles. In order to rate the cavitation resistance of materials, constant conditions have been used. However, while a dynamic cavitation condition can be generated in a real system, there has been little reported on the effect of ultrasonic amplitude on the cavitation resistance and mechanism of composites. In this work, 3 kinds of epoxy coatings were used, and the cavitation resistance of the epoxy coatings was evaluated in 3.5% NaCl at 15 ℃ using an indirect ultrasonic cavitation method. Eleven kinds of mechanical properties were obtained, namely compressive strength, flexural strength and modulus, tensile strength and elongation, Shore D hardness, water absorptivity, impact test, wear test for coating only and pull-off strength for epoxy coating/carbon steel or epoxy coating/rubber/carbon steel. The cavitation erosion mechanism of epoxy coatings was discussed on the basis of the mechanical properties and the effect of ultrasonic amplitude on the degradation of coatings.
Recent primary concern for the design of high performance heat exchanger and highly integrated electronic equipments is to develop an active and creative technologies which enhance the heat transfer without obstructing the coolant flows. In this study, we found through the LDV measurement that the gaseous cavitation induced by ultrasonic vibration applied to the CO$_2$saturated water in the square cross-sectioned straight duct flow enhances the turbulence much more than the case of non-ultrasonic or normal ultrasonic conditions without gaseous cavitation does. We also found that gaseous cavitation can enhance effectively the turbulent heat transfer between the heating surfaces and coolants by destructing the viscous sublayer.
Proceedings of the Korean Society of Precision Engineering Conference
/
2003.06a
/
pp.1848-1852
/
2003
Generally, burrs refer to projected parts remained on the edge after material had been processed. These burrs decrease the precision of part and cause many problems in part assembly. Burrs are undesirable projections of the material beyond the edge of the workpiece. A number of deburring processes have been developed such as barreling, brushing, chemical methods etc. But, there are a few publications in the area of applying ultrasonics to deburring. When ultrasonic vibration propagates in the liquid medium, a large number of bubbles are formed. These bubbles generate an extremely strong force, which removes burrs. Cavitations were used as a term to describe erosion of parts caused by the action of cavities in liquid. The object of this study is to analyze the effects of ultrasonic cavitation in deburring process. For this purpose, we introduce a new ultrasonic cavitation method with abrasive, which efficiently removes the burrs. Experimental parameters to verify the deburring effects of ultrasonic cavitations are ultrasonic power, amplitude, distant of the transducer from the workpiece, deburring time and abrasive. It has been shown that deburring with ultrasonic cavitation in water is effective to burrs.
Cavitation corrosion in many industrial plants has recently become a serious issue. Cavitation corrosion has generally been investigated using a vibratory method based on ASTM G32 standard, and the test can be divided into direct cavitation and indirect cavitation. Cavitation corrosion test uses the vibration frequency of the horn of 20 kHz with constant peak-to-peak displacement amplitude. In this work, the peak-to-peak amplitude was controlled from 15 ㎛ to 85 ㎛, and electrochemical measurements were obtained during indirect cavitation. The relationship between cavitation corrosion rate and electrochemical properties was discussed. Corrosion steps of carbon steel at the initial stage under cavitation condition in 3.5 % NaCl can be proposed. When the cavitation strength is relatively low, corrosion of the steel is more affected by the electrochemical process than by the mechanical process; but when the cavitation strength is relatively high, corrosion of the steel is affected more by the mechanical process than by the electrochemical process. This work confirmed that the critical ultrasonic amplitude of 0.42 %C carbon steel is 53.8 ㎛, and when the amplitude is less than 53.8 ㎛, the corrosion effect during the cavitation corrosion process is higher than the mechanical effect.
Since the typical horn-type ultrasonic equipment induces a reaction at the probe tip, the sonochemical reaction has a limitation that it occurs only in a specific area. As one of the ways to overcome this limitation, an ultrasonic device with multi-stepped horn equipped with several oscillators has been developed. The objective of this study was to investigate the sonochemical effects induced by acoustic cavitation system in 20 kHz multi-stepped ultrasonic horn using calorimetry, KI dosimetry and the luminol test. The sonochemical effects of multi-stepped ultrasonic horn were compared with that of the typical horn-type 20 kHz ultrasonic device. The effect of immersion depth and power on the sonochemical reaction was investigated in the ultrasonic system with multi-stepped ultrasonic horn. Higher calorimetric energy was obtained at higher immersion depth and power conditions. Sonochemical effects increased significantly when using the high immersion depth and input power. However, as the input power increased, the cavitation reaction zone concentrated around the ultrasonic horn. Additionally, the experiments to examine the effect of liquid temperature was conducted. The smaller sonochemical reaction was obtained for the higher liquid temperature. The effect on temperature seems to be closely related to liquid conditions such as viscosity and vapor pressure of water.
Kim, Yi-Gu;Kim, Ho-Young;Kang, Seoung-Min;Kang, Byung-ha;Lee, Jin-Ho
Transactions of the Korean Society of Mechanical Engineers B
/
v.27
no.5
/
pp.612-619
/
2003
This work experimentally studies the fundamental mechanisms by which the ultrasonic vibration enhances convection and pool boiling heat transfer. A thin platinum wire is used as both a heat source and a temperature sensor. A high speed video imaging system is employed to observe the behavior of cavitation and thermal bubbles. It is found that when the liquid temperature is below its boiling point, cavitation takes place due to ultrasonic vibration while cavitation disappears when the liquid reaches the boiling point. Moreover, when the gas dissolved in liquid is removed by pre-degassing, the cavitation arises only locally. Depending on the liquid temperature, heat transfer rates in convection, subcooled boiling and saturated boiling regimes are examined. In convection heat transfer regime, fully agitated cavitation is the most efficient heat transfer enhancement mechanism. Subcooled boiling is most enhanced when tile local cavitation is induced after degassing. In saturated boiling regime, acoustic pressure is shown to be a dominant heat transfer enhancement mechanism.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.