• 제목/요약/키워드: Ultrasonic Attenuation

Search Result 224, Processing Time 0.024 seconds

Evaluation of Flaws in Adhesively Bonded Joint using Ultrasonic Signal Analysis (초음파 신호분석을 이용한 접착접합 이음의 결함평가)

  • Hwang, Yeong-Taik;Oh, Seung-Kyu;Han, Jun-Young;Jang, Chul-Sup;Yun, Song-Nam;Yi, Won;Kim, Hwan-Tae
    • Journal of Welding and Joining
    • /
    • v.22 no.2
    • /
    • pp.38-45
    • /
    • 2004
  • Ultrasonic signals transmitted through adhesively bonded plates were used to evaluate parameters related to attenuation and frequency in the adhesively bonded joint. The kinds of bonding materials with a different bonding thickness of constant pressure were used. And ultrasonic diagnosis was evaluated by p-wave sensor of 10MHz. FFT has been performed to determine bond-layer parameters such as effective thickness and frequency for adhesively bonded joint of A16061 plates in comparison with measured to theoretical ratios. When variable thickness exists, the ultrasonic spectrum was changed the frequency wave. The more materials thickness and the higher the frequency, the larger shift was observed. Measured ratios for cases of bond thickness and variety bonding materials are then used to determine bond parameters. The results show that the technique can be applied to the characterization of adhesively bonded joint.

Creep Damage Evaluation of High-Temperature Pipeline Material for Fossil Power Plant by Ultrasonic Test Method (초음파에 의한 발전소 고온배관재료의 크리프손상 평가)

  • Lee, Sang-Guk;Chung, Min-Hwa
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.2 s.32
    • /
    • pp.99-107
    • /
    • 1999
  • Boiler high-temperature pipelines such as main steam pipe, header and steam drum in fossil power plants are degraded by creep damage due to severe operationg conditions which are high temperature and high pressure for an extended period time. Such material degradation leads to various component failures causing serious accidents at the plants. Conventional measurement techniques such as replica method, electric resistance method, and hardness test method have such disadvantages as complex preparation and measurement procedures, too many control parameters, and therefore, low practicality and they were applied only to component surfaces with good accessibility. In this paper, artificial creep degradation test and ultrasonic measurement for their creep degraded specimens have been carried out for the purpose of evaluation for creep damage which can occur in high-temperature pipeline of fossil power plant. Absolute measuring method of quantitative ultrasonic measurement for material degradation was established, and long term creep degradationtests using life prediction formula were carried out. As a result of ultrasonic tests for crept specimens, we confirmed that the sound velocity decreased and the attenuation coefficient linearly increased in proportion to the increase of creep fractiin(${\phi}$c).

  • PDF

Attenuation Characterization of L(0,2) Guided Wave Mode through Numerical Analyses and Model Experiments with Buried Steel Pipe (수치해석과 모형실험을 통한 매립배관에서의 유도초음파 L(0,2) 모드의 감쇠 특성 평가)

  • Lee, Juwon;Na, Won-Bae
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.16-23
    • /
    • 2013
  • By carrying out numerical analyses and model experiments, this paper presents the attenuation characterization of an L(0,2) guided ultrasonic wave propagating in a buried steel pipe. From this investigation, we first find that the L(0,2) mode has a better attenuation property. Second, it is shown from the numerical analyses that the attenuation increases with increases in the soil embedment length (0, 500, 1000, and 1500 mm) and degrees of saturation (0, 50, 99, and 100%). Third, it is also shown from the model experiment that the attenuation increases as the embedment lengths and soil moisture quantities (0, 10, 20, and 30 kg) increase. Finally, we find that an exponential extrapolation gives a better attenuation prediction because the extrapolation gives similar attenuation patterns between the numerical and experimental results.

Experimental Investigation for the Attenuation Coefficient of Ultrasonic Guided Wave (유도초음파의 감쇠계수에 대한 실험적 고찰)

  • Lee, Dong-Jin;Cho, Youn-Ho;Lee, Joon-Hyun;Shin, Dong-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.458-465
    • /
    • 2009
  • In general, ultrasonic guided wave techniques that used for an evaluation of the internal defect have been applied without considering energy loss. It can be found out that the significant attenuation is observed in the signal of structure with defect by the scattering and absorption. Even in the signal acquired from defect-free structure, this attenuation can be also significant. Therefore, it is very essential to determine the Lamb wave propagation characteristics depending on modes because the dispersibility of Lamb wave can be easily influenced by the attenuation effect with frequency and thickness. For this reason, changing the propagation distance, attenuation coefficient of each Lamb wave mode needs to be investigated by the contact pitch-catch method with PZT(piezoelectric) sensors. In this paper, the experimental attenuation coefficient is measured by choosing the following three different variables; mode, thickness and plate materials. As a result, experimental attenuation coefficient is obtained as the function of variables.

Creep Damage Evaluation of Cr-Mo Steel High-Temperature Pipeline Material for Fossil Power Plant Using Ultrasonic Test Method (초음파법을 이용한 Cr-Mo강 고온배관재료의 크리프손상 평가)

  • Lee, Sang-Guk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.1
    • /
    • pp.18-26
    • /
    • 2000
  • Boiler high-temperature pipelines such as main steam pipe, header and steam drum in fossil power plants are degraded by creep damage due to severe operating conditions such as high temperature and high pressure for an extended period time. Conventional measurement techniques(replica method, electric resistance method, and hardness test method) for measuring creep damage have such disadvantages as complex preparation and measurement procedures, too many control parameters. And also these techniques have low practicality and applied only to component surfaces with good accessibility. In this paper, artificial creep degradation test and ultrasonic measurement for their creep degraded specimens(Cr-Mo alloy steels) were carried out for the purpose of evaluation for creep damage. Absolute measuring method of quantitative ultrasonic measurement for material degradation was established, and long term creep degradation tests using life prediction formula were carried out. As a result of ultrasonic tests for crept specimens. we conformed that both the sound velocity decreased and attenuation coefficient linearly increased in proportion to the Increase of creep life fraction($\Phi$c).

  • PDF

Nondestructive Evaluation for Artificial Degraded Stainless 316 Steel by Time-Frequency Analysis Method

  • Nam, Ki-Woo;Kim, Young-Un
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.87-92
    • /
    • 2001
  • In this studies, joint time-frequency analysis techniques were applied to analyze ultrasonic signals in the degraded austenitic 316 stainless steels, to study the evolution of damage in these materials. It was demonstrated that the nonstationary characteristics of ultrasonic signals could be analyzed effectively by these methods. The WVD was more effective for analyzing the attenuation and frequency characteristics of the degraded materials through ultrasonic. It is indicated that the joint time-frequency analysis, WVD method, should also be useful in evaluating various damages and defects in structural members.

  • PDF

A study on the debelopment of the Ultrasonic imaging system for tissue characterization (조직의 정량화를 위한 초음파 영상시스템의 개발에 관한 연구)

  • Choe, Jong-Ho;Choe, Jong-Su
    • The Journal of the Acoustical Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.31-42
    • /
    • 1987
  • An ultrasonic pulse-echo diagnostic system for tissue characterization with the estimation of attenuation coefficients is developed and its performance has been examined by system implementation. The system divided into the ultrasonic generator, A/D converter, data communication, computer for signal processing. The methods for estimating the spatial distribution of acoustic attenuation coefficients using the moment analysis are proposed. The experimental results indicate the potential of the methods for tissue characterization.

  • PDF

Observation of Acoustic Characteristic Change in bubble cloud by Ultrasonic Cavitation (초음파 캐비테이션에 의한 기포군에서의 음향특성 변화관찰)

  • Noh, Si-Cheol;Kim, Ju-Young;Choi, Heung-Ho
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.5
    • /
    • pp.351-356
    • /
    • 2012
  • Ultrasonic cavitation is a physical phenomenon that generates and collapses microbubbles in media (mainly fluids) under conditions of strong ultrasonic irradiation. In this study, changes in the ultrasonic acoustic characteristics of bubble clouds in relation to ultrasonic irradiation were observed by the quantitative evaluation of cavitation yields. Concave-type single ultrasonic transducers with center frequencies of 500 kHz and 1.1 MHz were used to produce cavitation, and 2.25 MHz interference ultrasonic waves that would traverse any bubble clouds generated were used to analyze the cavitation. The parameters used for the evaluation of cavitation yields (changes in the center frequency, attenuation characteristics, and the propagation time of penetrating waves) were analyzed in relation to the cavitation-generating conditions (irradiation intensity, excitation signal, and center frequency). On the basis of these results, correlations between the changes in the center frequency and irradiation intensity were identified. Although the correlation coefficient was low, notable changes were observed in the center frequency under certain irradiation conditions. Attenuation trends in the interference ultrasonic waves showed high correlations with all the irradiation conditions, and it was noted that these trends were not affected by the forms of cavitation generated. No differences in the propagation time were observed among different irradiation conditions. These findings suggest that bubble yields can be quantitatively evaluated effectively by evaluating the diverse irradiation conditions and that such a quantitative evaluation could be used to study the basic cavitation phenomenon occurring in high-intensity ultrasonic wave treatment.

Ultrasound Attenuation in the Assessment of Bone Mineral Density and Elastic Modulus of Human Trabecular Bone

  • Han, S.M.;Kim, M.S.
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.2
    • /
    • pp.171-176
    • /
    • 1998
  • The objective of this study was to re-evaluate ultrasound attenuation as an indicator of bone properties. Ultrasound attenuation(BUA), were measured in the three orthogonal directions of trabecular bone cubes, Measurements of bone mineral density(BMD) were made using quantitative computed tomography and apparent density by weighing bone specimens and measuring their volume. Ultrasonic modulus was calculated from the standard equation with apparent density and ultrasound velocity. Ultrasound attenuation at a frequency of 0.5 MHz and BUA were correlated with BMD and ultrasonic modulus in the anterior/posterior, medial/lateral, and superior/inferior directions. Analysis of correlations demonstrated that attenuation at 0.5 MHz was superior to BUA in describing both BMD and elastic modulus of trabecular bone. This result may be used to improve current ultrasound diagnostic techniques for assessing bone status.

  • PDF

Estimation of Attenuation Coefficient for Detection of Abnormal Tissue in Liver (간내의 비정상 조직 검출을 위한 감쇠계수 추정)

  • 최홍호;홍승홍
    • Journal of Biomedical Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.43-52
    • /
    • 1985
  • In this paper, the depth and attenuation coefficient are estimated from the mutilayered liver tissue which contained a inhomogeneous one using reflected ultrasonic signals and the abnormal one is detected quantitatively. Regarding a liver tissue as several reflectors, we analyzed each one by the frequency spectral difference method and discussed its attenuation characteristics. For the verification of this method, the liver pantom and acryle are used. And also we proved the usefulness through the experiment.

  • PDF