• Title/Summary/Keyword: Ultrasonic/Nondestructive Evaluation

Search Result 302, Processing Time 0.017 seconds

Delamination and concrete quality assessment of concrete bridge decks using a fully autonomous RABIT platform

  • Gucunski, Nenad;Kee, Seong-Hoon;La, Hung;Basily, Basily;Maher, Ali
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.1
    • /
    • pp.19-34
    • /
    • 2015
  • One of the main causes of a limited use of nondestructive evaluation (NDE) technologies in bridge deck assessment is the speed of data collection and analysis. The paper describes development and implementation of the RABIT (Robotics Assisted Bridge Inspection Tool) for data collection using multiple NDE technologies. The system is designed to characterize three most common deterioration types in concrete bridge decks: rebar corrosion, delamination, and concrete degradation. It implements four NDE technologies: electrical resistivity (ER), impact echo (IE), ground-penetrating radar (GPR), and ultrasonic surface waves (USW) method. The technologies are used in a complementary way to enhance the interpretation. In addition, the system utilizes advanced vision to complement traditional visual inspection. Finally, the RABIT collects data at a significantly higher speed than it is done using traditional NDE equipment. The robotic system is complemented by an advanced data interpretation. The associated platform for the enhanced interpretation of condition assessment in concrete bridge decks utilizes data integration, fusion, and deterioration and defect visualization. This paper concentrates on the validation and field implementation of two NDE technologies. The first one is IE used in the delamination detection and characterization, while the second one is the USW method used in the assessment of concrete quality. The validation of performance of the two methods was conducted on a 9 m long and 3.6 m wide fabricated bridge structure with numerous artificial defects embedded in the deck.

Conservation Scientific Diagnosis and Evaluation of Bird Track Sites from the Haman Formation at Yongsanri in Haman, Korea (함안 용산리 함안층 새발자국 화석산지의 보존과학적 진단 및 평가)

  • Lee, Gyu Hye;Park, Jun Hyoung;Lee, Chan Hee
    • Korean Journal of Heritage: History & Science
    • /
    • v.52 no.3
    • /
    • pp.74-93
    • /
    • 2019
  • The Bird Track Site in the Haman Formation in Yongsanri (Natural Monument No. 222) was reported on the named Koreanaornis hamanensis and Jindongornipes kimi sauropod footprint Brontopodus and ichnospecies Ochlichnus formed by Nematoda. This site has outstanding academic value because it is where the second-highest number of bird tracks have been reported in the world. However, only 25% of the site remains after being designated a natural monument in 1969. This is due to artificial damage caused by worldwide fame and quarrying for flat stone used in Korean floor heating systems. The Haman Formation, including this fossil site, has lithofacies showing reddish-grey siltstone and black shale, alternately. The boundary of the two rocks is progressive, and sedimentary structures like ripple marks and sun cracks can clearly be found. This site was divided into seven formations according to sedimentary sequences and structures. The results of a nondestructive deterioration evaluation showed that chemical and biological damage rates were very low for all formations. Also, physical damage displayed low rates with 0.49% on exfoliation, 0.04% on blistering, 0.28% on break-out; however, the joint crack index was high, 6.20. Additionally, efflorescence was observed on outcrops at the backside and the northwestern side. Physical properties measured by an indirect ultrasonic analysis were found to be moderately weathered (MW). Above all, the southeastern side was much fresher, though some areas around the column of protection facility appeared more weathered. Furthermore, five kinds of discontinuity surface can be found at this site, with the bedding plane showing the higher share. There is the possibility of toppling failure occurring at this site but stable on plane and wedge failure by means of stereographic projection. We concluded that the overall level of deterioration and stability were relatively fine. However, continuous monitoring and conservation treatment and management should be performed as situations such as the physicochemical weathering of the fossil layer, and the efflorescence of the mortar adjoining the protection facility's column appear to be challenging to control.