• Title/Summary/Keyword: Ultrapure water production process

Search Result 7, Processing Time 0.022 seconds

A Study of the Optimization Process Combination on the Ultrapure Water Treatment System (초순수 생산을 위한 최적공정 조합 평가)

  • Lee, Kyung Hyuk;Kim, Dong Gyu;Kwon, Boung Su;Jung, Kwan Sue
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.7
    • /
    • pp.364-370
    • /
    • 2016
  • In this paper, the technique that determines efficient process combinations for the ultrapure water production was studied. The ultrapure water is one of the industrial water used in industrial activity and required in the advanced technology integrated industry. It is produced by combined process including filtration, ion exchange processes, the reverse osmosis (RO) process, degassing (DG) process and UV-oxidation (UVox) process. An ultrapure water production process consists of 15-20 different water treatment unit process. In this study, a pilot plant was built and operated to research the design parameters for the individual process. Through the pilot plant operation, 19 effective combinations were optimized among various processes. And then, 11 of them satisfied the final quality of the ultrapure water. The stability and economic feasibility were evaluated about the final 11 process combinations.

Removal of low concentration organic matter by reverse osmosis membranes in ultrapure water production process (초순수 제조 공정에서 역삼투 막의 저농도 유기물 제거)

  • Lee, Hongju;Kim, Suhan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.4
    • /
    • pp.391-396
    • /
    • 2014
  • Ultrapure water (UPW) is water containing nothing but water molecule ($H_2O$). The use of UPW is increasing in many industries such as the thermal and nuclear power plants, petrochemical plants, and semiconductor manufacturers. In order to produce UPW, several unit processes such as ion exchange, reverse osmosis (RO), ultraviolet (UV) oxidation should be efficiently arranged. In particular, RO process should remove not only ions but also low molecular weight (LMW) organic matters in UPW production system. But, the LMW organic matter removal data of RO membranes provided by manufacturers does not seem to be reasonable because they tested the removal in high concentration conditions like 1,000 ppm of isopropyl alcohol (IPA, MW=60.1). In this study, bench-scale experiments were carried out using 4-inches RO modules. IPA was used as a model LMW organic matter with low concentration conditions less than 1 ppm as total organic carbon (TOC). As a result, the IPA removal data by manufacturers turned out to be trustable because the effect of feed concentration on the IPA removal was negligble while the IPA removal efficiency became higher at higher permeate flux.

ORGANIC POLLUTANTS DEGRADATION USING PULSELESS CORONA DISCHARGE: APPLICATION IN ULTRAPURE WATER PRODUCTION

  • Shin, Won-Tae;Sung, Nak-Chang
    • Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.144-154
    • /
    • 2005
  • The use of ozone gained acceptance in the production of ultrapure water because of its powerful oxidizing ability. Ozone is currently used to deactivate microorganisms and remove organic contaminants. However, interest also exists in using radical species, which arc stronger oxidants than ozone, in such processes. One means of producing radical species is by corona discharge. This work investigates the use of a novel pulseless corona-discharge system for the removal of organic substances in ultrapure water production. The method combines corona discharge with electrohydrodynamic spraying of oxygen, forming microbubbles. Experimental results show that pulseless corona discharge effectively removes organics, such as phenol and methylene blue, in deionized water. The corona-discharge method is demonstrated to be comparable to the direct use of ozone at a high-applied voltage. The results also show that a minimum applied voltage exists for operation of the corona-discharge method. In this work, the minimum applied voltage is approximately 4.5 kV. The kinetic rate or phenol degradation in the reactor is modeled. Modeling results show that the dominant species of the pulseless corona-discharge reactor are hydroxyl radical and aqueous electron. Several radical species produced in the pulseless corona-discharge process are identified experimentally. The. major species are hydroxyl radical, atomic hydrogen species, and ozone.

The design parameter evaluation of ion exchange process for ultra pure water production (초순수 생산을 위한 이온교환공정 설계특성 평가)

  • Park, Se-Chool;Kwon, Boung-Su;Lee, Kyung-Hyuk;Jung, Kwan-Sue
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.1
    • /
    • pp.65-75
    • /
    • 2015
  • In this study, cation and anion exchange process for performance evaluation was conducted. A pilot plant for the ultrpure water production was installed with the capacity of $25m^3/d$. The various production rate and regeneration of ion exchange rate were tested to investigate the design parameters. The test resulst was applied to calculate the operating costs. Changing the flow rate of the ion exchange capacity of the reproduction reviewed the cation exchange process as opposed to the design value is 120 to 164% efficiency, whereas both anion exchange process is 82 to 124% efficiency, respectively. This results can be applied for more large scale plant if the scale up parameters are consdiered. The ion exchange capacity of the application in accordance with the design value characteristic upon application equipment is expected to be needed. In this study, the performance of cation and anion exchange resin process was evaluated with pilot plant($25m^3/d$). The ion exchange capacity along with space velocity and regeneration volume was evaluated. In results, the operation results was compared with design parameters.

Advances in electrodeionization technology for ionic separation - A review

  • Khoiruddin, Khoiruddin;Hakim, A.N.;Wenten, I.G.
    • Membrane and Water Treatment
    • /
    • v.5 no.2
    • /
    • pp.87-108
    • /
    • 2014
  • Electrodeionization (EDI), which combines electrodialysis (ED) and conventional ion-exchange (IX), is a mature process which has been applied since more than twenty years on commercial use for the production of ultrapure water (UPW). Eliminating chemical regeneration is the main reason for its commercial success. The increase in acceptance of EDI technology has led to an installation of very large plant as the commercial state of the art that produces $1,500m^3/h$ of water for high pressure steam boiler. More recently, EDI system has found a number of new interesting applications in wastewater treatment, biotechnology industry, and other potential field. Along with further growth and wider applications, the development of stack construction and configuration are also become a concern. In this paper, the principle of EDI process is described and its recent developments, commercial scale, and various applications are pointed out.

Research Trend of Membrane for Water Treatment by Analysis of Patent and Papers Publication (특허 및 논문 게재 분석을 통한 수처리용 분리막의 연구동향)

  • Woo, Chang Hwa
    • Applied Chemistry for Engineering
    • /
    • v.28 no.4
    • /
    • pp.410-419
    • /
    • 2017
  • Since the beginning of the water shortage by disasters such as global warming, environmental pollution, and drought, development of original technology and studies have been undergone to increase availability of water resources. Among them the water treatment separation membrane technology is an environmentally friendly process that does not use chemicals and shows better water quality improvement effect than conventional physicochemical and biological processes. The water treatment membrane can be applied to various fields such as waste water treatment, water purification treatment, seawater desalination, ion exchange process, ultrapure water production, organic solvent separation and water treatment technology, and it tends to expand the range of application. In the core technology of water treatment membrane, researches are being actively carried out to develop a separation membrane of better performance by controlling the pore size to adjust the separation performance. In this review, we summarized the frequency of announcement by country and organization through the technological competitiveness evaluation of patents and papers of the water separation membrane. Also, we evaluated the results from membrane research for waste water treatment, water purification treatment, seawater desalination, ion exchange process and present the future direction of research.

Membrane Processes for Energy Saving in Japan

  • Nakao, Shin-ichi
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.45-58
    • /
    • 1994
  • Over the last 20 years, membrane separation processes, such as reverse osmosis, ultrafiltration and microfiltration, have been widely adopted by different industries. Commercial uses of membrane have displaced conventional separation processes, such as distillation, evaporation, precoat filter and so on. Membrane separation processes are often more capital and energy efficient when compared with conventional separation processes. Membrane devices and systems are almost always compact and modular. These are the well-known advantages of membrane separation processes. The disadvantage of the membrane process is that the process does not have scale merit and thus the membrane process is suitable for the small and middle size applications. Energy saving is, of course, the biggest advantage of the membrane process, and in many industries the membrane processes are employed because of this reason. Membrane process has other big advantage. In many applications membrane processes provide much higher quality of product than conventional processes. The example is ultrapure water production by membrane processes in semiconductor industry. Conventional technologies never offer such good quality of pure water. If you can obtain both energy saving and higher quality of product at the same time by membrane processes, this is the best application of membrane processes. One example is the concentration of orange juice by membrane, which has already been commercialized in Japan. Comparing with the conventional vacuum evaporation process, juice concentrated by the membrane process has much better taste and flavor and the energy consumption in the membrane process is much less than the evaporation process. In this paper, first membrane separation technology will be classified and then Japanese membrane manufacturers and new modules and devices under development in Japan will be introduced. Fourth energy saving in membrane process will be discussed and finally practical applications of membrane processes in Japan will be shown.

  • PDF