• 제목/요약/키워드: Ultramicropore

검색결과 3건 처리시간 0.016초

초미세기공을 지니는 탄소분자체의 수소저장거동 (Preparation and Characterization of Ultramicroporous Carbons for Hydrogen Storage)

  • 이슬이;박수진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.158.1-158.1
    • /
    • 2011
  • In this work, we prepared ultramicroporous carbons (UC) prepared by pyrolyzing poly(vinylidene fluoride) with different carbonization temperatures, and investigated the hydrogen storage behaviors. The surface functional groups and specific elements of UC were confirmed by Fourier-transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS), respectively. Textural properties were analyzed using $N_2$ adsorption isotherms at 77 K. The hydrogen storage capacity of the UC samples were investigated by BEL-HP at 298 K/10 MPa. From the results, it was found that the hydrogen storage capacity was enhanced with increasing of specific surface area, resulting from the formation of ultramicropore on the UC.

  • PDF

탄소-실리카막을 이용한 기체분리 (Carbon-Silica Membrane for Gas Separation)

  • Lee, Young-Moo;Park, Ho-Bum
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2004년도 첨단 분리막 연구동향
    • /
    • pp.77-102
    • /
    • 2004
  • Carbon materials obtained from organic polymers are usually amorphous structure. The structure of carbon materials is not nearly as well defined as that of zeolite. Carbon are amorphous materials with comparatively wide pore size distribution as compared to the crystalline zeolites with monodisperse ultramicropore and micropore dimensions. (omitted)

  • PDF

Fabrication of Activated Carbon Fibers from Polyacrylonitrile-Derived Carbon Fibers: Investigating CO2 Adsorption Capability in Relation to Surface Area

  • Seung Geon Kim;Sujin Lee;Inchan Yang;Doo-Won Kim;Dalsu Choi
    • Composites Research
    • /
    • 제36권6호
    • /
    • pp.402-407
    • /
    • 2023
  • Activated carbon fibers (ACFs) are fibrous form of activated carbon (AC) with higher mechanical strength and flexibility, which make them suitable for building modules for applications including directional gas flow such as air and gas purification. Similarly, ACFs are anticipated to excel in the efficient capture of CO2. However, due to the difficulties in fabricating monofilament carbon fibers at a laboratory scale, most of the studies regarding ACFs for CO2 capture have relied on electrospun carbon fibers. In this study, we fabricated monofilament carbon fibers from PAN-based monofilament precursors by stabilization and carbonization. Then, ACFs were successfully prepared by chemical activation using KOH. Different weight ratios ranging from 1:1 to 1:4 were employed in the fabrication of ACFs, and the samples were designated as ACF-1 to ACF-4, respectively. As a function of KOH ratio, increase in surface area could be observed. However, the CO2 adsorption trend did not follow the surface area trend, and the ACF-3 with second largest surface area exhibited the highest CO2 adsorption capacity. To understand the phenomena, nitrogen content and ultramicropore distribution, which are important factors determining CO2 adsorption capacity, were considered. As a result, while nitrogen content could not explain the phenomena, ultramicropore distribution could provide a reasoning that the excessive etching led ACF-4 to develop micropore structure with a broader distribution, resulting in high surface area yet deteriorated CO2 adsorption.