• Title/Summary/Keyword: Ultrafine Particle

Search Result 145, Processing Time 0.027 seconds

Synthesis and Characterization of Ultrafine $\beta$-SiC Powder by Vapor Phase Reaction (기상합성법에 의한 $\beta$-SiC 초미분말 합성 및 특성)

  • 어경훈;이승호;유용호;소명기
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.11
    • /
    • pp.1190-1196
    • /
    • 1998
  • Ultrafine ${\beta}$-SiC powders were synthesized by the vapor phase reaction of TMS[Si(CH3)4] in hydrogen The reaction temperature and TMS concentration were varied from 1000 to 1400$^{\circ}C$ and from 1 to 10% respectively. The average particle size and phase of the powders were analyzed by TEM and XRD. Ultrafine ${\beta}$-SiC powders were synthesized above 1000$^{\circ}C$ and the crystallinity of the powders increased with increasing reaction temperature. Shape of the particles were spherical and had average size of about 20 nm which showed no difference as the reaction temperature and TMS concentration increased. From the FT-IR analysis the absorption bands of Si-C of the powders shifted to higher wavenumber as the reaction temperature increased,. Under the condition of total gas flow above 1500cc/min ${\beta}$-SiC and poly-Si powders were obtained simultaneously. The Si-O bond intensity was increased under the condition of total gas flow rate above 1000cc/min which might be due to oxidation formed on poly-Si.

  • PDF

Preparation of Ultrafine Mullite Powder from Metal Alkoxides (금속 알콕사이드로부터 Mullite 초미분체의 제조)

  • Yim, Going;Yim, Chai-Suk;Kim, Young-Ho
    • Korean Journal of Materials Research
    • /
    • v.16 no.12
    • /
    • pp.719-724
    • /
    • 2006
  • Ultrafine mullite powder was prepared from aluminium-secbutoxide and tetraethyl orthosilicate(TEOS) in the molar $Al_2O_3/SiO_2$=3/2. Sol-gel method by partial hydrolysis technique, as it were, first, TEOS was partially hydrolysized and then mixed with Al-secbutoxide for complete hydrolysis was used. X-ray diffraction, infrared spectroscopy and transmission electron microscopy, etc. confirmed that the mullite powder prepared by this method is in the stoichiometric $Al_2O_3/SiO_2$ ratio. Al-Si spinel was formed at $980^{\circ}C$ and ultrafine mullite powder with about 20 nm particle size was obtained above $1,200^{\circ}C$. Also mullite powders calcined at $1,600^{\circ}C$ had a stoichiometric composition, $3Al_2O_3{\cdot}2SiO_2$ and the lattice constants of the mullite powders calcined above $1,200^{\circ}C$ were almost coincided with theoretical values.

The Effect of Reaction Conditions on the Preparation of Ni Powder Using Wet Chemical Reduction Process (습식 환원법에 의한 Ni 분말 합성시 반응조건의 영향)

  • Kim Dong-Hyun;Park Young-Min;Kim Yi-Joong;Jin Hyeong-Ho;Park Hong-Chae;Yoon Seog-Young
    • Korean Journal of Materials Research
    • /
    • v.14 no.10
    • /
    • pp.725-730
    • /
    • 2004
  • Nickel ultrafine powder have been synthesized by chemical reduction of aqueous $NiSO_4$ with hydrazine at various reaction conditions. The effect of reaction conditions such as the amount of surfactant and reductor, and reaction temperature on the particle size and shape was investigated by the mean of XRD, SEM and SEM-PSA. Experiments showed that the ratio of $N_{2}H_4/Ni$ and the reaction temperature were affected on the particle size of the nickel powder. The average particle size of synthesized nickel powder increased with increasing reaction temperature regardless of the ratio of $N_{2}H_4/Ni$. Also the surfactant could influence the size and agglomeration of ultrafine powder with the reaction temperature.

A Study on the Grouting Effect of Ultrafine Cement in Rock Ground (초미립자 시멘트의 암반지반 그라우팅 주입효과에 관한 연구)

  • An, Jun-Hee;Park, Choon-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.279-286
    • /
    • 2018
  • The grouting method is to reinforce the ground by injecting the chemical solution for the strengthening of the ground. Cement grouting material has usually used portland cement for centuries ago, but the cement particle size is large and the injection effect is limited. This study analyzes the effect of ultrafine cement grouting in rock ground using 3S-1 grouting in rock ground and ordinary Portland cement (OPC). The results of tests were compared and analyzed from the Lugeon test, bore loading test (P.M.T.), and injection (P-Q) test. The use of ultrafine cement (3S-1) had a higher effect (K, 10-6cm/sec) than OPC. The reinforcement effect of 3S-1 was also confirmed. Ultrafine cement (3S-1) was 4~9 times more injectable than OPC. Therefore, it is more advantageous to use ultrafine cement (3S-1) than OPC.

The Effect of the Acid Precipitate Conditions on the Size Distribution of Molybdenum Trioxide Particle

  • Tang, Jun-Li
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.171-172
    • /
    • 2006
  • The effect of the preparation factors, such as the feeding mode and rate of raw materials, the reaction temperature and the surfactant on the size distribution of molybdenum trioxide particle were investigated by orthogonal test. The optimum conditions for the preparation of $MoO_3$ precursors are as following; opposite feeding fast, reaction temperature of $60^{\circ}C$ and adding dispersant.

  • PDF

Particle Emission Characteristics and Measurement of Ultrafine Particles from Laser Printer (사무용기기에서 발생되는 미세입자 측정 및 분석방법 연구)

  • Lee, Kyung Hwan;Kim, Sun Man;Ahn, Kang-Ho
    • Particle and aerosol research
    • /
    • v.6 no.3
    • /
    • pp.123-129
    • /
    • 2010
  • As the indoor activity increases in recent years, the indoor air quality becomes more important. One of the major contaminants in office space is the copy machines and the laser based printers. These devices usually emit nano-particles and chemical species that may give some health effect. The amount of particles generated by the printers and copy machines depend on printer models, printing speed, toners, papers, humidity and so on. To evaluate the emission rate of nano-particles from Laser Printers, the mass concentration measurement method has been used (BAM, 2004). However, the mass concentration measurement method for nano-particles is tedious and time consuming. Therefore, for the development of a new nano-particle counting method, the nano-particle emission characteristics and size distributions are evaluated.

Preparation of Nanocrystalline ZnO Ultrafine Powder Using Ultrasonic Spraying Combustion Method (초음파분무 연소법에 의한 나노결정 ZnO 초미분체 제조)

  • Kim, Kwang-Su;Hwang, Du-Sun;Ku, Suk-Kyeon;Lee, Kang;Jeon, Chi-Jung;Lee, Eun-Gu;Kim, Sun-Jae
    • Korean Journal of Materials Research
    • /
    • v.12 no.10
    • /
    • pp.784-790
    • /
    • 2002
  • For mass product of nanocrystalline ZnO ultrafine powders, self-sustaining combustion process(SCP) and ultrasonic spray combustion method(USCM) were applied at the same time. Ultrasonic spray gun was attached on top of the vertical type furnace. The droplet was sprayed into reaction zone of the furnace to form SCP which produces spherical shape with soft agglomerate crystalline ZnO particles. To characterize formed particles, fuel and oxidizing agent for SCP were used glycine and zinc nitrate or zinc hydroxide. Respectively, with changing combustion temperature and mixture ratio of oxidizing agent and fuel, the best ultrasonic spray conditions were obtained. To observe ultrasonic spray effect, two types of powder synthesis processes were compared. One was directly sprayed into furnace from the precursor solution (Type A), the other directly was heated on the hot plate without using spray gun (Type B). Powder obtained by type A was porous sponge shape with heavy agglomeration, but powder obtained using type B was finer primary particle size, spherical shape with weak agglomeration and bigger value of specific surface area. 9/ This can be due to much lower reaction temperature of type B at ignition time than type A. Synthesized nanocrystalline ZnO powders at the best ultrasonic spray conditions have primary particle size in range 20~30nm and specific surface area is about 20m$^2$/g.

Low-Temperature Preparation of Ultrafine Fe2O3 Powder from Organometallic Precursors (유기금속 전구체로부터 초미립 $Fe_2O_3$ 분말의 저온 합성)

  • 김정수;김익범;강한철;홍양기
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.12
    • /
    • pp.942-948
    • /
    • 1992
  • Ultrafine iron oxide powder, {{{{ gamma }}-Fe2O3 and $\alpha$-Fe2O3, were prepared by the thermal decomposition of organometallic compounds. The formation process of powder includes the thermal decomposition and oxidation of the organometallic precursors, Fe(N2H3COO)2(N2H4)2 (A) and N2H5Fe(N2H3COO)3.H2O (B). The organometallic precursors, A and B, were synthesized by the reaction of ferrous ion with hydrazinocarboxylic acid, and characterized by quantitative analysis and infrared spectroscopy. The mechanistic study for the thermal decomposition was performed by DAT-TG. The iron oxide powder was obtained by the heat treatment of the precursors at 20$0^{\circ}C$ and $600^{\circ}C$ for half an hour in air. The phases of the resulting product were proved {{{{ gamma }}-Fe2O3 and $\alpha$-Fe2O3 respectively. The particle shape was equiaxial and the particle size was less than 0.1 ${\mu}{\textrm}{m}$. Magnetic properties of the {{{{ gamma }}-Fe2O3 powder obtained from A and B was 234 Oe of coercivity, 64.26 emu/g of saturation magnetization, 23.59 emu/g of remanent magnetization and 24.1 Oe, 47.27 emu/g, 3.118 emu/g respectively. The value of $\alpha$-Fe2O3 powder was 1.494 Oe, 0.4862 emu/g, 0.1832 emu/g and 1,276 Oe, 0.4854 emu/g, 0.1856 emu/g respectively.

  • PDF

Indoor Air Pollution of a High-rise Apartment Caused by Combustion Sources in Winter (겨울철 연소오염원에 의한 도심 고층 아파트의 실내공기오염)

  • Kim, Jong Bum;Lee, Gwangjae;Ryu, Sung Hee;Lee, Jae Young;Woo, Sung-Ho;Lee, Seung-Bok;Kim, Kyung Hwan;Yun, Seong-Taek;Bae, Gwi-Nam
    • Particle and aerosol research
    • /
    • v.10 no.3
    • /
    • pp.119-130
    • /
    • 2014
  • Home is a major living environment of children. In urban area, indoor air at home could be severely influenced by combustion sources such as vehicle exhaust and cooking. In this work, the air quality of a high-rise apartment was investigated by monitoring combustion-related air pollutants at both indoor and outdoor in winter of 2014. From 48-h continuous monitoring data, large amount of $NO_x$ was observed at the balcony of the high-rise apartment during the morning traffic hours. It deteriorated indoor air quality of the apartment. During the cooking activity, high peak episodes of ultrafine particles were seen. It was concluded that effects of vehicle exhaust and cooking activity on the indoor air of the high-rise apartment could be easily checked by $NO_x$ and ultrafine particle indicators, respectively.

Vehicle-related Fine Particulate Air Pollution in Seoul, Korea

  • Bae, Gwi-Nam;Lee, Seung-Bok;Park, Su-Mi
    • Asian Journal of Atmospheric Environment
    • /
    • v.1 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • Vehicle exhaust is a dominant source of air pollutants in urban areas. Since people are easily exposed to vehicle exhaust particles while driving a car and/or traveling via public transportation, air pollution near traffic has been extensively studied in developed countries. In this paper, investigations on vehicle-related fine particulate air pollution at roadsides and on roads in Seoul, Korea were reviewed to understand air pollution near traffic. Comparison of $PM_{10}$ concentrations in Seoul showed that roadside air is more contaminated than urban air, implying that exposure levels near vehicular emissions are more critical to sensitive persons. Concentrations of ultrafine particles and BC (black carbon) at roadsides of Seoul fluctuate highly for short durations, responding to traffic situations. Diurnal variations of ultrafine particles and BC concentrations at roadsides seem to be affected by traffic volume, mixing layer height, and wind speed. Concentrations of ultrafine particles and BC decrease as distance from the road increases due to dilution during transport. On-road air pollution seems to be more severe than roadside air pollution in Seoul. Since nearby traffic air pollution has not been well understood in Seoul, further studies including various vehicular air pollutants and representative locations are needed.