• Title/Summary/Keyword: Ultrafine Dust

Search Result 35, Processing Time 0.025 seconds

A Study on the Combustion Flow Characteristics of a Exhaust Gas Recirculation Burner with the Change of Outlet Opening Position (배기가스 재순환 버너에서 연소가스 출구 위치에 따른 연소 유동 특성에 관한 연구)

  • Ha, Ji-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.8-13
    • /
    • 2018
  • Nitrogen oxides (NOx) have recently been very influential in the generation of ultrafine dust, which is of great social interest in terms of improving the atmospheric environment. Nitrogen oxides are generated mainly by the reaction of nitrogen and oxygen in air in a combustion gas atmosphere of high temperature in a combustion apparatus such as thermal power generation. Recently, research has been conducted on the combustion that recirculates the exhaust gas to the cylindrical burner by using a piping using a Coanda nozzle. In this study, three types of burners were carried out through computational fluid analysis. Case 1 burner with the outlet of the combustion gas to the right, Case 2 burner with both sides as gas exit, Case 3 burner with left side gas exit. The pressure, flow, temperature, combustion reaction rate and distribution characteristics of nitrogen oxides were compared and analyzed. The combustion reaction occurred in Case 1 and Case 2 burner in the right direction with combustion gas recirculation inlet and Case 3 burner in the vicinity of mixed gas inlet. The temperature at the outlet was about $100^{\circ}C$ lower than that of the other burners as the Case 2 burner was exhausted to both sides. The NOx concentration of Case 1 burner at the exit was about 20 times larger than that of the other burners. From the present study, it could be seen that it is effective for the NOx reduction to exhaust the exhaust gas to both side gas exits or to exhaust the exhaust gas to the opposite direction of inlet of recirculation gas.

Estimation of Pollutant Sources in Dangjin Coal-Fired Power Plant Using Carbon Isotopes (탄소 안정동위원소를 이용한 석탄화력발전소 인근 오염원 기원 추정 : 당진시를 중심으로)

  • Yoon, Soohyang;Cho, Bong-Yeon
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.3
    • /
    • pp.567-575
    • /
    • 2021
  • Residents in Dangjin, South Chungcheong Province, in which large-scale emissions facilities such as coal-fired power plants and steel mills are concentrated, are very much concerned about their health despite the local government's aggressive efforts to improve air quality and reduce greenhouse gases. To understand the impact of coal-fired power plants and external factors on local air pollution, the origins of local pollutants were investigated using stable carbon isotopes that are generally used as tracers of the provenance of fine or ultrafine dust. The origins of the pollutants were analyzed with the data library, built using the seasonally measured data for the two separate locations selected considering the distance from the coal-fired power plant and the analysis of previous studies, and with the back trajectory analysis. As a result of analyzing stable isotope ratios, the tendency of high concentration was found in the order of winter > spring > fall > summer. According to the data matching with the library, the mobile pollutants and open-air incineration had a relatively higher impact on the local air pollution. It is believed that this study, as a pilot study, should focus on securing the reliability of the study results through continuous monitoring and data accumulation.

Understanding the Effects of Deep Fertilization on Upland Crop Cultivation and Ammonia Emissions using a Newly Developed Deep Fertilization Device (신개발 심층시비장치를 이용한 심층시비의 밭작물 재배 효과)

  • Sung-Chang Hong;Min-Wook Kim;Jin-Ho Kim;Seong-Jik Park
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.1
    • /
    • pp.28-34
    • /
    • 2023
  • Nitrogen fertilizers applied to agricultural lands for crop cultivation can be volatilized as ammonia. The released ammonia can catalyze the formation of ultrafine dust (particulate matter, PM2.5), classified as a short-lived climate change pollutant, in the atmosphere. Currently, one of the prominent methods for fertilizer application in agricultural lands is soil surface application, which comprises spraying the fertilizers onto the soil surface, followed by mixing the fertilizers with the soil. Owing to the low nitrogen absorption rate of crops, when nitrogen fertilizers are applied in this manner, they can be lost from land surfaces through volatilization. Therefore, investigating a new fertilization method to reduce ammonia emissions and increase the fertilizer utilization efficiency of crops is necessary. In this study, to develop a method for reducing ammonia emissions from nitrogen fertilizers applied to soil surfaces, deep fertilization was conducted using a newly developed deep fertilization device, and ammonia emissions from barley, garlic, and onion fields were examined. Conventional fertilization (surface application) and deep fertilization (soil depth of 25 cm) were conducted for analysis. The fertilization rate was 100% of the standard fertilization rate used for barley, and deep fertilization of N, P, and K fertilizers was implemented. Ammonia emissions were collected using a wind tunnel chamber, and quantified subsequently susing the indole-phenol blue method. Ammonia emissions released from the basal fertilizer application persisted for approximately 58 d, beginning from approximately 3 d after fertilization in conventional treatments; however, ammonia was not released from deep fertilization. Moreover, barley, garlic, and onion yields were higher in the deep fertilization treatment than in the conventional fertilization treatment. In conclusion, a new fertilization method was identified as an alternative to the current approach of spraying fertilizers on the soil surface. This new method, which involves injecting nitrogen fertilizers at a soil depth of 25 cm, has the potential to reduce ammonia emissions and increase the yields of barley, garlic, and onion.

Analysis of the Association between Air Pollutant Distribution and Mobile Sources in Busan Using Spatial Analysis (공간 분석을 통한 부산광역시 대기오염물질의 분포와 이동오염원 간의 관련성 연구)

  • Jae-Hee Min;Byoung-Gwon Kim;Hyunji Ju;Na-Young Kim;Yong-Sik Hwang;Seungho Lee;Young-Seoub Hong
    • Journal of Environmental Health Sciences
    • /
    • v.50 no.3
    • /
    • pp.191-200
    • /
    • 2024
  • Background: Busan is a rapidly industrializing city with many mixed residential and industrial areas. Fine dust emissions from mobile pollution sources such as ships and vehicles are particularly high in Busan. Objectives: This study analyzed the spatial distribution of air pollutants over the past three years and identified the impact of air pollutants through mobile source data in Busan. Methods: We obtained air pollutant data on fine particulate matter (PM10), ultrafine particulate matter (PM2.5), nitrogen dioxide (NO2), sulfurous acid gas (SO2), and ozone (O3) for the last three years (source: airkorea.or.kr) and analyzed the spatial distribution using SAS 9.4 and Surfer 23. For the mobile pollutant data, we used CCTV data from major intersections in Busan to identify truck and car traffic, and visualized traffic density with QGIS. Results: The analysis of the concentration of air pollutants over three years (2020~2022) showed that all were lower than the annual environmental standards with the exception of PM2.5. PM10 and PM2.5 were found to be highly concentrated in the western part of the area, while NO2 was high in the port area of Busan and SO2 was high in the western part of the area and near the new port of Busan. In the case of O3, it was high in the eastern part of the city. The traffic volume of freight vehicles by intersection was concentrated in the West Busan area, and the traffic volume for all cars was also confirmed to be concentrated at "Mandeok Intersection" located in the West Busan area. Conclusions: This study was conducted to determine the relationship between air pollutants emitted from motor vehicles and the distribution of air pollutants in Busan. The spatial distribution of PM10 and PM2.5 correlates with traffic volume, while high concentrations of SO2 and NO2 near the port are associated with ship emissions.

Analysis of Meteorological Factors when Fine Particulate Matters Deteriorate in Urban Areas of Jeju Special Self-Governing Province (제주특별자치도 도시지역 미세먼지 악화 시 기상요소 분석)

  • Sin, Jihwan;Jo, Sangman;Park, Sookuk
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.1
    • /
    • pp.36-58
    • /
    • 2022
  • In this study, the weather conditions corresponding to the increase in the environmental concentration of fine dust (PM10) and ultrafine dust (PM2.5) from 2001 to 2019 in Jeju and Seogwipo cities were analyzed. The increase in the levels of PM10 and PM2.5 was observed in the order: spring > winter > autumn > summer. In both cities, PM10 and PM2.5 levels increased more frequently during the day in spring and summer and at night in autumn and winter, with PM2.5 showing a greater increase in concentration than PM10. The air temperature and wind speed corresponding with increased levels of PM10 were higher than their respective seasonal averages in spring and winter, but lower in summer and autumn. Relative humidity was lower than the seasonal average during all seasons. The air temperature variation corresponding with increased levels of PM2.5 showed the same seasonal trend as that observed for PM10. The relative humidity was higher than the respective seasonal averages in spring and summer, and lower in winter. The wind speed was lower than the seasonal average in both the cities. When the PM10 and PM2.5 levels increased, the wind direction was from the north and the west during the day and varied according to the season at night. The rate of the increase in the PM10 concentration was the highest in both cities at the wind speed of 1.6 - 3.4 ms-1 during the day and night except during night in the summer. The highest concentration of PM2.5 was observed with the wind speed range of 1.6 - 3.4 ms-1 in Jeju, and 0.3 - 1.6 ms-1 in Seogwipo. The results of this study applied to urban and landscape planning will aid in the formulation of strategies to reduce the adverse effects of fine particular matter.