• Title/Summary/Keyword: Ultrafiltration Membrane

Search Result 476, Processing Time 0.025 seconds

Improving the Functional Properties of Oyster Hydrolysates by Two-step Enzymatic Hydrolysis (2단 가수분해에 의한 굴 가수분해물의 기능성 개선)

  • Chung In-Kwon;Kim Jin-Soo;Heu Min-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.39 no.3
    • /
    • pp.269-277
    • /
    • 2006
  • This study prepared functional oyster hydrolysates using two-step enzymatic hydrolysis and investigated their functional properties. To prepare two-step enzymatic hydrolysates (TSEH), oysters were hydrolyzed using 1% Protamex (PR) at $40^{\circ}C$ and pH 6.0 for 1 hr before sequential treatment with one of the following enzymes for 1 hr: Alcalase (AL), Flavourzyme (FL), Neutrase (NE), pepsin (PE), and trypsin (TR). The PRAL, PRNE and PRTR hydrolysates had significantly greater angiotensin I converting enzyme (ACE) inhibitory activity than did PR and the other TSEHs. Only the antioxidant activity of the PRNE hydrolysate was significantly different (p<0.05), while none of the TSEHs had antimicrobial activity. The oyster hydrolysate prepared by sequential treatment with Protamex and Neutrase (PRNE) had the best ACE inhibitory activity and antioxidant activity, with $IC_{50}$ values of 0.40 and 0.94 mg/mL, respectively. The PRNE hydrolysate was processed through an ultrafiltration (UF) series with molecular weight cut-off (MWCO) membranes of 3, 5, 10, and 30 kDa, and the ACE inhibitory, antioxidant, and antimicrobial activities of the permeates were determined. The permeate through the 3-kDa MWCO membrane had greater ACE inhibitory activity and antioxidant activity than did the other PRNE permeates, with $IC_{50}$ values of 0.11 and 0.40 mg/mL, respectively.

Chemical Composition and Rheological Properties of Enzymatic Hydrolysate of Porphyran Isolated from Pyropia yezoensis (김(Pyropia yezoensis)에서 분리한 포피란 효소가수분해물의 화학적 및 유동 특성)

  • In, Seo-Kyoung;Koo, Jae-Geun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.1
    • /
    • pp.58-63
    • /
    • 2015
  • The chemical and rheological properties of natural and enzymatically hydrolyzed porphyran isolated from Pyropia yezoensis were investigated. The enzymatic hydrolysate was prepared by hydrolysis of porphyran using ${\beta}$-agarase followed by fractionation based on molecular weight (>300 kDa (Fr-1), 100-300 kDa (Fr-2), 10-100 kDa (Fr-3) and 1-10 kDa (Fr-4) using an ultrafiltration membrane. Each hydrolysate fraction consisted mainly of galactose (42.7-57.5%), 3,6-anhydro galactose (6.5-15.1%) and ester sulfate (8.6-14.1%). The sulfate content of the enzymatically hydrolyzed fractions decreased with an increase in molecular weight, whereas the 3,6-anhydro galactose content increased significantly. The rheological behavior of porphyran and enzymatically hydrolyzed porphyran solutions demonstrated a pseudoplastic behavior, which agrees with the Herschel-Bulkley model. The effect of temperature on the viscosity of the porphyrans and hydolysate fractions were measured and modeled using the Arrhenius equation. The activation energy of the porphyrans and enzymatically hydrolyzed porphyran (Fr-1) increased from 12.30 to 20.29 kJ/mol and 9.06 to 23.84 kJ/mol, respectively with increasing concentrations from 3% to 7%. These data indicate that the extent of the apparent viscosity of porphyran and enzymatically hydrolyzed porphyran are influenced by both temperature and concentration.

Improved Purification Process for Cholera Toxin and its Application to the Quantification of Residual Toxin in Cholera Vaccines

  • Jang, Hyun;Kim, Hyo-Seung;Kim, Jeong-Ah;Seo, Jin-Ho;Carbis, Rodney
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.1
    • /
    • pp.108-112
    • /
    • 2009
  • A simplified method for the purification of cholera toxin was developed. The 569B strain of Vibrio cholerae, a recognized hyper-producer of cholera toxin, was propagated in a bioreactor under conditions that promote the production of the toxin. The toxin was separated from the bacterial cells using 0.2-${\mu}m$ crossflow microfiltration, the clarified toxin was passed through the membrane into the permeate, and the bacterial cells were retained in the retentate. The 0.2-${\mu}m$ permeate was then concentrated 3-fold and diafiltered against 10 mM phosphate buffer, pH 7.6, using 30-kDa crossflow ultrafiltration. The concentrated toxin was loaded onto a cation exchange column, the toxin was bound to the column, and most of the impurities were passed unimpeded through the column. The toxin was eluted with a salt gradient of phosphate buffer, pH 7.0, containing 1.0 M NaCl. The peak containing the toxin was assayed for cholera toxin and protein and the purity was determined to be 92%. The toxin peak had a low endotoxin level of $3.1\;EU/{\mu}g$ of toxin. The purified toxin was used to prepare antiserum against whole toxin, which was used in a $G_{M1}$ ganglioside-binding ELISA to determine residual levels of toxin in an oral inactivated whole-cell cholera vaccine. The $G_{M1}$ ganglioside-binding ELISA was shown to be very sensitive and capable of detecting as little as 1 ng/ml of cholera toxin.

An Efficient Method for the Release of Recombinant Penicillin G Amidase from the Escherichia coli Periplasm (대장균의 periplasm으로부터 재조합 PGA 단백질의 효율적이고 간단한 방출 방법)

  • Lee, Sang-Mahn
    • Journal of Life Science
    • /
    • v.27 no.10
    • /
    • pp.1145-1151
    • /
    • 2017
  • In this study, we report on a simple, efficient method for obtaining penicillin G amidase (PGA) from recombinant Escherichia coli using a formulation mixed with detergent and lysozyme. Research was conducted on the extraction efficiency of PGA from the periplasmic space in cells in terms of the type of detergent, detergent concentration, pH, reaction time, and temperature of permeabilization. The extraction yield of PGA in the formulated surfactant/lysozyme treatment was increased by approximately (55-65 U/ml) in comparison with that in the single surfactant treatment. The released PGA solution was concentrated and exchanged with buffer using an ultrafiltration (U/F) system. The yields of diatomite filtration, membrane filtration (M/F), and U/F were 69.7%, 93.8%, and 77.3%, respectively. A total of 212 KU of PGA was recovered. At the 25-L culture scale, the overall yield of extraction using the mixed surfactant/lysozyme method was 49.2%. The specific activity of extracted PGA was 11 U/mg in protein. The concentrated PGA solution was immobilized on microporous silica beads without further purification of PGA. The total immobilization yield of PGA on the resin was 48.7%, while the enzyme activity was 101 U/g. The immobilized PGA was successfully used to produce 6-APA from penicillin G. Our results indicated that a simple extraction method from periplasmic space in E. coli may be used for the commercial scale production of ${\beta}-lactam$ antibiotics using immobilized PGA.

Affinity Immobilization of Dextransucrase on Dextran-based Support and the Production of Leucrose

  • Han, Nam-Soo;Kang, Seung-Yeon;Lee, Soo-Bok;Robyt, John F.
    • Food Science and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.317-322
    • /
    • 2005
  • A simple and convenient method of immobilizing dextransucrase via an affinity interaction is described, along with the use of this system to synthesize leucrose. Dextransucrase was produced in sucrose-free medium by fermenting a constitutive mutant of Leuconostoc mesenteroides NRRL B-512F and was separated using an ultrafiltration membrane. The purified enzyme was free of dextran polymer, which previously was always found with the sucrose-induced enzyme. Therefore, it was possible to immobilize the enzyme on dextran-based resins using an affinity interaction. Sephadex G-200 was the best resin for immobilizing the dextransucrase and gave a fast flow rate through the packed column. The immobilized dextransucrase retained more than 80% of its specific activity after immobilization ($K_m\;=\;18.1\;mM$ and $k_{cat}\;=\;450\;sec^{-1}$ vs. 13.1 mM and $640\;sec^{-1}$, respectively, for the free enzyme). The immobilized dextransucrase showed improved stability over a pH range of 4.0 to 6.5 and at moderately high temperatures over $40^{\circ}C$. When immobilized dextransucrase was used to synthesize leucrose via the transfer reaction with sucrose and fructose, about 74% of the sucrose was converted into leucrose after one day, and the half-life of the enzyme activity was 15 days. Regeneration of the resin by supplementation with dextransucrase enabled the recovery of the initial activity of the system, but both the reaction and the flow rate were lower, probably owing to the accumulation of dextran inside the resin.

Continuous Hydrolysis of Cod Skin Gelatin in an Ultrafiltration Reactor (한외여과막 반응기를 이용한 어피젤라틴의 연속적 가수분해)

  • Kim, Se-Kwon;Byun, Hee-Guk;Cheryan,Munir
    • KSBB Journal
    • /
    • v.6 no.3
    • /
    • pp.309-319
    • /
    • 1991
  • A continuous stirred tank membrane reactor(CSTMR ) was developed and optimized for the production of cod skin gelatin hydrolyzates using endo-protease Alcalase. A experimental design methodology was used to optimize the four performance variables: enzyme concentration, substrate concentration, permeate flux and reactor volume. All four variables studied had an effect on substrate conversion, with enzyme and substrate concentrations being predominant. Conversion increased with the increase in enzyme concentration, with the decrease in substrate concentration, at high volumes and low flux. A strong interaction was observed between enzyme and substrate concentrations and smaller interactions between enzyme and flux and substrate and flux. The optimum operating conditions for the CSTMR process for an initial substrate concentration for 10% were $50^{\circ}C$, pH 8, flux 7.3ml/min, residence time 82 min, and Alcalase to substrate ratio 0.02(w/w). A gradual decay in reactor activity during 8 hrs was 2.1% conversion/hr. Enzyme leakage through the 10, 000 MWCO membrane was 16% at $50^{\circ}C$ and 12% at $35^{\circ}C$, 6hrs. However, there was no apparent correlation between enayme leakage and substrate conversion. The Km value for the CSTMR was 20 times higher than the batch reactor. The productivity(expressed as mg product/mg enzyme) of the CSTMR was more than six fold higher than the batch at $50^{\circ}C$. The hydrolyzate was non-bitter.

  • PDF

Antimicrobial Activity of Soy Protein Hydrolysate with Asp. saitoi Pretense (콩 단백 효소 가수분해물의 항균활성)

  • 주정현;이상덕;이규희;이기택;오만진
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.2
    • /
    • pp.229-235
    • /
    • 2004
  • Soy protein was hydrolyzed by 5 different pretenses and determinated antimicrobial activity of each hydrolysate. The soy protein hydrolysate treated by pretense from Aspergillus saitoi showed the highest antimicrobial activity among the protease studied and was used for further analysis. Soy protein hydrolysate was fractionated by ultrafiltration for M.W. 10,000,3,000 and 1,000. The M.W 1,000∼3,000 showed the highest antimicrobial activity. The minimum inhibition concentrations of obtained fraction were 0.5∼0.8 mg/mL for gram positive and negative microbials, and its activity was even observed after heating at 121$^{\circ}C$ for 10 min, suggesting that hydrolyzed protein having antimicrobial activity is quite heat-stable. Reverse-phase HPLC was further applied to separate the fraction and 8 peaks were found. Each 8 peaks were separated and pooled and measured antimicrobial activity. Among them, retention time of peak at 16.02 min showed the prominent antimicrobial activity.

Antioxidant Activity of Low Molecular Peptides Derived from Milk Protein (유단백질 가수분해에 의해 생성된 저분자 Peptides의 항산화 활성)

  • Woo, Sung-Ho;Jhoo, Jin-Woo;Kim, Gur-Yoo
    • Food Science of Animal Resources
    • /
    • v.29 no.5
    • /
    • pp.633-639
    • /
    • 2009
  • The principal objective of the current study was to prepare low molecular weight peptides from milk proteins using enzymatic hydrolysis techniques, in an effort to assess the antioxidant activity of these peptides. The casein and whey proteins isolated from fresh milk were treated with several proteolytic enzymes, such as chymotrypsin, pepsin, and trypsin and the resulting low molecular weight peptides were collected by TCA precipitation. Their identity was confirmed by SDS-PAGE analysis. The hydrolysis experiments indicated that whey protein treated with chymotrypsin displayed the highest degree of protein hydrolysis. The antioxidant activity of milk protein hydrolysates was determined by measuring the ABTS-radical scavenging activity. The results of these experiments showed that hydrolysis of the milk protein was effective in increasing their antioxidant activities. Especially, the tryptic digested casein displayed the highest radical scavenging activity (80.7%). The hydrolyzed low molecular weight milk protein was isolated using an ultrafiltration membrane. The casein hydrolysate passed through a membrane with molecular weight cut-off (MWCO) of 3 kDa displayed the strongest antioxidant activity.

Effects of Substrates on Nanofiltration Characteristics of Multilayer Polyelectrolyte Membranes (다층 고분자 전해질 막의 나노여과 특성에 미치는 지지체의 영향)

  • Hong, Seong-Uk
    • Membrane Journal
    • /
    • v.18 no.2
    • /
    • pp.185-190
    • /
    • 2008
  • In a previous study, we probed the potential of poly(styrene sulfonate) (PSS)/poly(diallyldimethylammonium chloride) (PDADMAC) nanofiltration (NF) membranes for the separation of monovalent anions, with an emphasis on the selective rejection of $F^-$. Remarkably, deposition of $(PSS/PBADMAC)_4PSS$ films on porous alumina supports yielded membranes that exhibited $Cl^-/F^-$ selectivity > 3 with minimal $Cl^-$ rejection, and a solution flux of $3.5m^3/m^2$-day at 4.8 bar. When the number of PSS/PDADMAC bilayers was increased from 4.5 to 5.5, however, $F^-$ rejection decreased from 73% to 50% and $Cl^-/F^-$ selectivity dropped to 1.9. Addition of another bilayer to form $(PSS/PDADMAC)_6$ PSS films resulted in a significant increase in $Cl^-$ rejection to give essentially no $Cl^-/F^-$ selectivity. The decrease of selectivity with deposition of more than 4.5 bilayers was not expected and it was unclear whether this characteristic was substrate independent. In this study, to investigate the effect of substrates on NF performance of multilayer polyelectrolyte membranes, PSS/PDADMAC films were deposited on 50 kDa polyethersulfone (PES) ultrafiltration supports instead of porous alumina supports. The results indicate that, although fluoride rejection and the number of bilayers at which a maximum $F^-$ rejection occurs are different, the trend is similar for both types of substrates. Therefore, we can conclude that the M: characteristics of multilayer polyelectrolyte membranes may be substrate independent.

Purification and Characterization of Antioxidative Peptides from Enzymatic Hydrolysate of Cod Teiset Protein (대구고니 단백질의 효소적 가수분해물로부터 항산화성 펩타이드의 분리${\cdot}$정제 및 특성)

  • KIM Se-Kwon;CHOI Yong-Ri;PARK Pyo-Jam;CHOI Jeoung-Ho;MOON Sung-Hoon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.3
    • /
    • pp.198-204
    • /
    • 2000
  • In order to utilize by-products which would normally be discarded in marine processing plants, cod teiset protein was hydrolyzed and antioxidative actiTity of the hydrolysate was investigated. AntioxidatiTe peptide was isolated using ultrafiltration membrane, ion-exchange chromatography on a SP-Sephadex C-25 column, gel filtration on a Sephadex G-15 column, high performance liquid chromatography on an ODS column, and capillary electrophoresis chromatography. Antioxidative activities of the cod teiset hydrolysate were compared with ${\alpha}-tocopherol$, one of the commercial antioxidant. The hydrolysate passed through a membrane with molecular weight cut-off (MWCO) 1 kDa was shown the strongest antioxidative activity, and the activity was higher $10{\%}$ as compared with ${\alpha}-tocopherol$. In addition, the peptide isolated by ion-exchange chromatography, gel filtration, and HPLC, respectively, was higher $53{\%}$ as compared with ${\alpha}-tocopherol$, and the amino acid sequence was Ser-Asn-Pro-Glu-Trp-Ser-Trp-Asn.

  • PDF