• Title/Summary/Keyword: Ultra-low Head

Search Result 19, Processing Time 0.021 seconds

Parametric Study of a Fixed-blade Runner in an Ultra-low-head Gate Turbine

  • Mohamed Murshid Shamsuddeen;Duc Anh Nguyen;Jin-Hyuk Kim
    • New & Renewable Energy
    • /
    • v.20 no.1
    • /
    • pp.116-125
    • /
    • 2024
  • Ultra-low-head is an unexplored classification among the sites in which hydroelectric power can be produced. This is typically owing to the low power output and the economic value of the turbines available in this segment. A turbine capable of operating in an ultra-low-head condition without the need of a dam to produce electricity is developed in this study. A gate structure installed at a shallow water channel acting as a weir generates artificial head for the turbine mounted on the gate to produce power. The turbine and generator are designed to be compact and submersible for an efficient and silent operation. The gate angle is adjustable to operate the turbine at varying flow rates. The turbine is designed and tested using computational fluid dynamics tools prior to manufacturing and experimental studies. A parametric study of the runner blade parameters is conducted to obtain the most efficient blade design with minimal hydraulic losses. These parameters include the runner stagger and runner leading edge flow angles. The selected runner design showed improved hydraulic characteristics of the turbine to operate in an ultra-low-head site with minimal losses.

Computational Analysis of an Inverted-type Cross-flow Turbine for Ultra-low head Conditions (전산유체역학을 이용한 초저낙차 상황에서의 도립형 횡류수차의 해석 및 설계 최적화)

  • Ham, Sangwoo;Ha, Hojin;Lee, Jeong Wan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.4
    • /
    • pp.76-86
    • /
    • 2019
  • The cross-flow turbine is a key hydraulic power system that is widely due to low costs, high efficiency, and low maintenance. In particular, the cross-flow turbine considered as the most suitable turbine for low head situations as it is known to operate down to 5 m of water head. However, the conventional cross-flow turbine is unsuitable for ultra-low head situations with less than a 3 m water head. In this study, we propose an inverted-type cross-flow turbine to overcome the limitations of conventional cross-flow turbines under ultra-low head situations. First, we described the limitations of conventional turbines and suggested a new turbine for the ultra-low head circumstances. Second, we investigated the performance of the new turbine using CFD analysis. Results demonstrated the effects of the design parameters, such as number of blades and rotor diameter ratio, on the performance of the suggested turbine. As a result, we developed an inverted-type cross-flow turbine with up to 60% efficiency under low water head conditions.

A Study on Head-Disk Interactions at Ultra-low Flying Height in Contact Start-Stop (Contact Start-Stop 방식에서의 극저부상 높이에서 Head-Disk Interface Interactions 연구)

  • 조언정
    • Tribology and Lubricants
    • /
    • v.19 no.2
    • /
    • pp.102-108
    • /
    • 2003
  • The height of laser bumps has been considered as the limit of the minimum flying height in the contact start-stop (CSS) of hard disk drives. In this paper, tribological interactions at flying height under laser bumps are investigated in a spin stand for development of ultra-low flying head-disk interface. With the reduction of the spinning speed in a spin stand, the flying height is decreased under the height of laser bumps and, then, head-disk interactions are investigated using AE and stiction/friction signals. During seek tests and 20000 cycle-sweep tests, AE and stiction/friction signals are not significantly changed and there are no catastrophic failures of head-disk interface. Bearing analysis and AFM analysis show that there are signs of wear and plastic deformation on the disks. It is suggested that flying height could be as low as and, sometimes, lower than laser bump height.

Design of a Low Distortion Head-Mounted Display with Freeform Reflective Mirror Based on Two Ellipsoids Structure

  • Wang, Junhua;Liang, Yuechao;Xu, Min
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.234-238
    • /
    • 2016
  • A new method to design a low distortion, even relative illumination, optical see-through head-mounted display (HMD) with a freeform reflective mirror (FFRM) based on the two similar ellipsoids structure is proposed. The HMD we have realized has a simple structure which consists of two similar ellipsoid surfaces, an FFRM, a 7-piece co-axis relay lens, and an OLED. This structure can be applied to offset distortion, reach even relative illumination, and correct the off-axis aberrations. The HMD we finally have realized has a near 3% low distortion, a higher than 80% relative illumination, and a 40°×30° field of view (FOV).

Fabrication and Performance Demonstration of the 20kW Class Inverted-type Cross-flow Turbine Based on Computational Fluid Dynamics Analysis (전산유체역학 해석에 기반한 20kW급 도립형 횡류수차의 제작 및 성능 실증)

  • Ham, Sangwoo;Choi, Ji-Woong;Jeong, Changho;Kim, Taeyun;Choi, Sangin;Jin, Glenn Young;Lee, Jeong Wan;Ha, Hojin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.107-119
    • /
    • 2021
  • The cross-flow turbine is one of the most famous and widely used hydraulic power systems for a long time. The cross-flow turbine is especially popular in many countries and remote regions where off-grided because of its many benefits such as low cost, high efficiency at low head, simple structure, and easy maintenance. However, most modern turbines, including the cross-flow turbine, are unsuitable for the ultra-low head situation, known as less than 3m water head or zero head with over 0.5m/s flow velocity. In this study, we demonstrated a 20kW class inverted-type cross-flow turbine's performance. First, we reevaluated our previous studies and introduced how to design the inverted-type cross-flow turbine. Secondly, we fabricated the 20kW class inverted-type cross-flow turbine for the performance test. And then, we designed a testbed and installed the turbine system in the demonstration facility. In the end, we compare the demonstration with its previous CFD results. The comparing result shows that both CFD and real model fitted on guide vane angle at 10 degrees. At the demonstration, we achieved 42% turbine efficiency at runner speed 125 RPM.

Investigation of Head-Disk Impact for Development of Ultra-Low Flying HDI (극저부상 HDI 개발을 위한 Head-Disk Impact 연구)

  • 조언정;박노열
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.122-126
    • /
    • 2001
  • Magnetic hard disk drive is continually being pushed to reduce head-disk spacing for higher recording densities. The current minimum spacing between the air-bearing slider and disk has been reduced to under 15 nm. In this work, it was investigated if flying height could be lowered under the height of laser bumps. With the reduction of the spinning speed, the flying height was decreased under the height of laser bumps. When a head swept between landing zone and data zone, the head-disk impact was monitored using AE and friction signals. It is demonstrated that magnetic hard disk drive could be operated without tribological failures under the height of laser bumps.

  • PDF

Investigation of Head-Disk Interactions at Ultra-low Flying HDI

  • Cho, Unchung
    • KSTLE International Journal
    • /
    • v.3 no.2
    • /
    • pp.114-118
    • /
    • 2002
  • In this work, head-disk interactions are studied when flying height becomes lower than laser bump height on the landing zone of a disk. With the reduction of the spinning speed in a spin stand, the flying height is decreased under the height of laser bumps. Conventional and padded pico sliders sweep between landing Bone and data zone and, then, the dynamic behavior of the pico sliders and head-disk impacts are investigated using AE and stiction/friction signals. After 200n cycle-sweep tests, bearing analysis and AFM analysis indicate that there are some signs of wear and plastic deformation in the landing zone of a disk, although AE and stiction/friction signals are not significantly changed during the sweep tests. The experimental results of this paper suggest that in CSS tests at component level, more rigorous examination methods of wear and plastic deformation might be necessary as flying height becomes getting lower.

A study on the ultra precision machining of free-form molds for advanced head-up display device (첨단 헤드업 디스플레이 장치용 비구면 자유형상 금형의 초정밀 가공에 관한 연구)

  • Park, Young-Durk;Jang, Taesuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.290-296
    • /
    • 2019
  • Head-up displays for vehicles play an important role in displaying various information about the safety and convenience of driving on the windshield of the vehicle. In this study, ultra-precision machining was performed and evaluated as a method for machining a large-area aspheric free-form mirror that is applicable to augmented reality technology. Precision diamond cutting is highly accurate and suitable for the production of advanced parts with excellent surface integrity, low surface roughness, and low residual stress. By using an aspheric free-form mold, it is possible to improve the optical transfer function, reduce the distortion path, and realize a special image field curvature. To make such a mold, the diamond cutting method was used, and the result was evaluated using an aspherical shape-measuring machine. As a result, it was possible to the mold with shape accuracy (PV) below $1{\mu}m$ and surface roughness (Ra) below $0.02{\mu}m$.

Steady State Analysis of Magnetic Head Slider at Ultra Low Clearance (마그네틱 헤드 슬라이더의 極小 空氣膜에 대한 定常狀態 解析)

  • 장인배;한동철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.764-770
    • /
    • 1989
  • This paper analyze the steady state performance of a self-acting air lubricated slider bearing in hard disk/head system. Modified Reynolds' equation is derived from the steady state compressible Navier-Stokes equation, under slip-flow conditions. Finite difference technique and numerical procedure are described by using Newton-Raphson iteration method to slove the non-linear equations. These techniques are applied to conventional slider bearings and the effects of molecular mean free path(MMFP) for a recording surface of hard disk are shown. The calculation procedure developed here, wide applicabilities in practical head design procedures, and converges rapidly.