• Title/Summary/Keyword: Ultra-lightweight geopolymer

Search Result 2, Processing Time 0.015 seconds

Properties of quasi-noncombustible ultra-lightweight geopolymer (준불연 초경량 지오폴리머의 물성)

  • Kim, Yootaek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.3
    • /
    • pp.132-139
    • /
    • 2019
  • EPS (expanded polystyrene) is one of the most used building materials for insulation that is favored by its excellent heat insulation, economical efficiency and lightweight characteristics. However, EPS is vulnerable to the fire and producing large amount of toxic gases in case of fire. Therefore, ultra-lightweight geopolymer which can replace EPS is fabricated by using IGCC (integrated gasification combined cycle) fused slag and Si sludge as raw materials and the possibility of replacement on ultra-lightweight geopolymer for EPS as an insulation building material was evaluated in this study. Ultra-lightweight geopolymer can be fabricated with the pulverized IGCC fused slag having low carbon content and density, compressive strength, thermal conductivity were $0.064g/cm^3$, 0.04 MPa, and 0.072 W/mK, respectively. The thermal conductivity of ultra-lightweight geopolymer is 1.5~2.0 times higher than that of EPS suggested in the KS M 3808; however, the thermal conductivity value of geopolymer is meaningful and competitive to that of EPS in the market. Therefore, ultralightweight geopolymer can be applicable to the building material for thermal insulation purpose and have an enough possibility to replace EPS in the future because it is not only much safer than EPS in case of fire but also it can be fabricate by using waste materials from the industry.

Ultra-high Temperature EM Wave Absorption Behavior for Ceramic/Sendust-aluminosilicate Composite in X-band (X-Band 영역에서의 세라믹/샌더스트-알루미노실리케이트 복합재의 초고온 전자파 흡수 거동)

  • Choi, Kwang-Sik;Sim, Dongyoung;Choi, Wonwoo;Shin, Joon-Hyung;Nam, Young-Woo
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.201-215
    • /
    • 2022
  • This paper presents the development of thin and lightweight ultra-high temperature radar-absorbing ceramic composites composed of an aluminosilicate ceramic matrix-based geopolymer reinforced ceramic fiber and sendust magnetic nanoparticles in X-band frequency range (8.2~12.4 GHz). The dielectric properties with regard to complex permittivity of ceramic/sendust-aluminosilicate composites were proportional to the size of sendust magnetic nanoparticle with high magnetic characteristic properties as flake shape and its concentrations in the target frequency range. The characteristic microstructures, element composition, phase identification, and thermal stability were examined by SEM, EDS, VSM and TGA, respectively. The fabricated total thicknesses of the proposed single slab ultra-high temperature radar absorber correspond to 1.585 mm, respectively, exhibiting their excellent EM absorption performance. The behavior of ultra-high temperature EM wave absorption properties was verified to the developed free-space measurement system linked with high temperature furnace for X-band from 25℃ to 1,000℃.