• Title/Summary/Keyword: Ultra-large Container-ship

Search Result 31, Processing Time 0.022 seconds

Investigation of torsion, warping and distortion of large container ships

  • Senjanovic, Ivo;Vladimir, Nikola;Tomic, Marko
    • Ocean Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.73-93
    • /
    • 2011
  • Large deck openings of ultra large container ships reduce their torsional stiffness considerably and hydroelastic analysis for reliable structural design becomes an imperative. In the early design stage the beam model coupled with 3D hydrodynamic model is a rational choice. The modal superposition method is ordinary used for solving this complex problem. The advanced thin-walled girder theory, with shear influence on both bending and torsion, is applied for calculation of dry natural modes. It is shown that relatively short engine room structure of large container ships behaves as the open hold structure with increased torsional stiffness due to deck effect. Warping discontinuity at the joint of the closed and open segments is compensated by induced distortion. The effective torsional stiffness parameters based on an energy balance approach are determined. Estimation of distortion of transverse bulkheads, as a result of torsion and warping, is given. The procedure is illustrated in the case of a ship-like pontoon and checked by 3D FEM analysis. The obtained results encourage incorporation of the modified beam model of the short engine room structure in general beam model of ship hull for the need of hydroelastic analysis, where only the first few natural modes are of interest.

Global hydroelastic analysis of ultra large container ships by improved beam structural model

  • Senjanovic, Ivo;Vladimir, Nikola;Tomic, Marko;Hadzic, Neven;Malenica, Sime
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.1041-1063
    • /
    • 2014
  • Some results on the hydroelasticity of ultra large container ships related to the beam structural model and restoring stiffness achieved within EU FP7 Project TULCS are summarized. An advanced thin-walled girder theory based on the modified Timoshenko beam theory for flexural vibrations with analogical extension to the torsional problem, is used for formulation of the beam finite element for analysis of coupled horizontal and torsional ship hull vibrations. Special attention is paid to the contribution of transverse bulkheads to the open hull stiffness, as well as to the reduced stiffness of the relatively short engine room structure. In addition two definitions of the restoring stiffness are considered: consistent one, which includes hydrostatic and gravity properties, and unified one with geometric stiffness as structural contribution via calm water stress field. Both formulations are worked out by employing the finite element concept. Complete hydroelastic response of a ULCS is performed by coupling 1D structural model and 3D hydrodynamic model as well as for 3D structural and 3D hydrodynamic model. Also, fatigue of structural elements exposed to high stress concentration is considered.

Improvement of Gas Pipe Structure for ULCS using Flow Analysis (유동 해석을 이용한 산업용 초대형 컨테이너 선박의 가스파이프 구조개선)

  • Choi, Sungmin;Kim, Jongwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.9-14
    • /
    • 2019
  • Recently, container vessels are required to be applied various technologies to improve ship life-cycle and operating efficiency for the cost decreasing of logistics. The degradation of engine efficiency due to the increasing capacity of the ship and the related equipment of facilities are applied to large-scale ships without considering the condition of ship operation by increasing the ship size and feature. In this paper, the flow analysis is performed with existing gas pipe in large-scale container ship with the operation-condition of higher capacity engine and facilities, and the results were used on the new gas pipe design for ULCS (Ultra Large Container Ship). The newly designed gas pipe can be expected to increase the operating efficiency of ULCS.

A Development of the Ship Weight Estimating Method by a Statistical Approach (통계적 접근법에 의한 선박 중량추정 방법 개발)

  • Cho, Yong-Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.5
    • /
    • pp.426-434
    • /
    • 2011
  • Accurate weight prediction methods are an essential of the ship design in both ship cost managements and performance satisfactions. When no parent or similar ships are available, an adequate method of the ship weight estimating is required. In this study, there was carried out to develop the ship weight estimating method for the preliminary design phase. The weight estimating methods were first surveyed by the references and summarized their characteristics. The weight estimation method by statistical approach was developed for the container ship because the containerized transportation markets is gradually growing and ship's size and loading capacity are rapidly enlarged. The correlation analysis and the multiple regression analysis were used for developing the weight estimating method. As a results of evaluating the developed method, the error ratio of the variation between estimated weight and ship's data was about 5%. And it was only 1% difference with the calculating weight of conceptual design results by shipyard design team that the estimating weight of ultra-large container ship was predicted by the developed method.

Hydro-structural issues in the design of ultra large container ships

  • Malenica, Sime;Derbanne, Quentin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.983-999
    • /
    • 2014
  • The structural design of the ships includes two main issues which should be checked carefully, namely the extreme structural response (yielding & buckling) and the fatigue structural response. Even if the corresponding failure modes are fundamentally different, the overall methodologies for their evaluation have many common points. Both issues require application of two main steps: deterministic calculations of hydro-structure interactions for given operating conditions on one side and the statistical post-processing in order to take into account the lifetime operational profile, on the other side. In the case of ultra large ships such as the container ships and in addition to the classical quasi-static type of structural responses the hydroelastic structural response becomes important. This is due to several reasons among which the following are the most important: the increase of the flexibility due to their large dimensions (Lpp close to 400 m) which leads to the lower structural natural frequencies, very large operational speed (> 20 knots) and large bow flare (increased slamming loads). The correct modeling of the hydroelastic ship structural response, and its inclusion into the overall design procedure, is significantly more complex than the evaluation of the quasi static structural response. The present paper gives an overview of the different tools and methods which are used in nowadays practice.

A Study on the Predicting Transverse Residual Stress at the Ultra Thick FCA Butt Weldment of Hatch Coaming in a Large Container Vessel (대형 컨테이너선의 해치 코밍 FCA 맞대기 용접부의 횡 방향 잔류응력 예측에 관한 연구)

  • Shin, Sang-Beom;Lee, Dong-Ju;Lee, Joo-Sung
    • Journal of Welding and Joining
    • /
    • v.28 no.4
    • /
    • pp.33-40
    • /
    • 2010
  • The purpose of this study is to establish a predictive equation of transverse residual stress at the thick FCA butt weldment of large container vessel. The variables used were restraint degree, yield strength of base material, thickness of weldment and welding heat input. Restraint degree at the thick weldment of container ship having the various welding sequence was calculated using FEA. From the result, the H-type specimen was designed to reproduce the level of restraint degree at the actual weldment of containership. Based on the results, the predictive equations of the mean value and the distribution of transverse residual stress at each location of the weldment were established using dimensional analysis and multiple-regression method. The predictive equations were verified by comparing with those measured by XRD in the actual weldment of the ship.

The Manoeuvrability of Very Large and Ultra Large Container Ship

  • Gwak, Sang-Min;Lee, Chun-Gi;Chae, Yang-Beom;Mun, Seong-Bae;Jeong, Tae-Gwon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.10a
    • /
    • pp.98-99
    • /
    • 2015
  • 안전운항 관점에서 보았을 때, 거대형선박의 조종운동특성에 대하여 실무적으로 파악하는 것은 대단히 중요한 문제이다. 이 논문에서는 선형에 따른 거대형선박의 조종운동특성에 대해서 다루고 있다.

  • PDF

Design methodology in transverse webs of the torsional box structure in an ultra large container ship

  • Silva-Campillo, Arturo;Suarez-Bermejo, J.C.;Herreros-Sierra, M.A.;de Vicente, M.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.772-785
    • /
    • 2021
  • Container ships has a transverse section in the form of an open profile, making it very sensitive to torsion phenomena. To minimize this effect, a structure known as a torsion box exists, which is subject to high stresses influenced by the fatigue phenomenon and the existence of cut-outs, for the passage of the longitudinal stiffeners, acting as stress concentrators. The aim of this study is to propose a two-stage design methodology to aid designers in satisfying the structural requirements and contribute with to a better understanding of the considered structure. The transverse webs of a torsional box structure are examined by comparing different cut-out geometries from numerical models with different regular load conditions to obtain the variables of the fatigue safety factor through linear regression models. The most appropriate geometry of the torsion box is established in terms of minimum weight, from nonlinear multivariable optimization models.

Analysis of productivity and efficiency for mega container ships: Case of Busan Port (초대형 컨테이너 선박의 생산성 및 효율성 분석 -부산항을 중심으로-)

  • Jong-Hoon Kim;Won-Hyeong Ryu;Shin-Woo Park;Hyung-Sik Nam
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.05a
    • /
    • pp.121-122
    • /
    • 2023
  • As containerized maritime transport began in earnest, the size of container ships has steadily increased, and recently, the operation of 24,000 TEU-class vessels has become regular. However, concerns about the efficiency and productivity of such mega container ships from a port operational perspective have continued to be raised. The 10th Busan International Port Conference requested an in-depth study on the trends of container ship enlargement by analyzing the order status of ultra-large container ships from major global liners. Generally, the factor that drives the upsizing of ships is the realization of economies of scale that lowers transportation costs per TEU, which leads to a higher level of cost reduction per unit transportation compared to the increase in fuel consumption due to transporting large amounts of cargo with a single ship. However, it is necessary to examine whether this trend of container vessel enlargement is feasible for port operations. To this end, this study compares and analyzes the productivity and efficeiency of different ship sizes to evaluate the effect of ship size on port operations.

  • PDF

Analysis of productivity and efficiency for mega container ships: Case of Busan Port (부산항 터미널별 선박 규모에 따른 선석 생산성 및 항만 효율성 비교분석)

  • Jong-Hoon Kim;Won-Hyeong Ryu;Shin-Woo Park;Hyung-Sik Nam
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.11a
    • /
    • pp.72-73
    • /
    • 2023
  • As containerized maritime transport began in earnest, the size of container ships has steadily increased, and recently, the operation of 24,000 TEU-class vessels has become regular. However, concerns about the efficiency and productivity of such mega container ships from a port operational perspective have continued to be raised. The 10th Busan International Port Conference requested an in-depth study on the trends of container ship enlargement by analyzing the order status of ultra-large container ships from major global liners. Generally, the factor that drives the upsizing of ships is the realization of economies of scale that lowers transportation costs per TEU, which leads to a higher level of cost reduction per unit transportation compared to the increase in fuel consumption due to transporting large amounts of cargo with a single ship. However, it is necessary to examine whether this trend of container vessel enlargement is feasible for port operations. To this end, this study compares and analyzes the productivity and efficeiency of different ship sizes to evaluate the effect of ship size on port operations.

  • PDF