• Title/Summary/Keyword: Ultra-high-performance

Search Result 978, Processing Time 0.029 seconds

Evaluation of Ultra-high and High Degree Geopotential Models for Improving the KGEOID98

  • Yun, Hong-Sic
    • Korean Journal of Geomatics
    • /
    • v.2 no.1
    • /
    • pp.7-15
    • /
    • 2002
  • Recent development of ultra-high and high degree Earth geopotential model opens new avenues to determine the Earth gravity field through spectral techniques to a very high accuracy and resolution. However, due to data availability, quality, and type, the performance of these new EGMs needs to be validated in regional or local scale geoid modeling. For establishing the best reference surface of geoid determination, recent geopotential models are evaluated using GPS/Leveling-derived geometric geoid and the Korean gravimetrical GEOID (KGEOID98) developed by National Geography Institute in 1998. Graphical and statistical comparisons are made for EGM96, GFZ97, PGM2000A and GPM98A models. The mean and standard deviation of difference between geometric height and geoid undulation calculated from GFZ97 are $1.9\pm{46.7}\;cm$. It is shown that the GFZ97 and the GPM98A models are better than the others in the Korean peninsula because the GFZ97 has a smaller bias. It means that the KGEOID98 needs some improvement using the GFZ97 instead of EGM96.

  • PDF

Autogenous shrinkage of ultra high performance concrete considering early age coefficient of thermal expansion

  • Park, Jung-Jun;Yoo, Doo-Yeol;Kim, Sung-Wook;Yoon, Young-Soo
    • Structural Engineering and Mechanics
    • /
    • v.49 no.6
    • /
    • pp.763-773
    • /
    • 2014
  • The recently developed Ultra High Performance Concrete (UHPC) displays outstanding compressive strength and ductility but is also subjected to very large autogenous shrinkage. In addition, the use of forms and reinforcement to confine this autogenous shrinkage increases the risk of shrinkage cracking. Accordingly, this study adopts a combination of shrinkage reducing admixture and expansive admixture as a solution to reduce the shrinkage of UHPC and estimates its appropriateness by evaluating the compressive and flexural strengths as well as the autogenous shrinkage according to the age. Moreover, the coefficient of thermal expansion known to experience sudden variations at early age is measured in order to evaluate exactly the autogenous shrinkage and the thermal expansion is compensated considering these measurements. The experimental results show that the compressive and flexural strengths decreased slightly at early age when mixing 7.5% of expansive admixture and 1% of shrinkage reducing admixture but that this decrease becomes insignificant after 7 days. The use of expansive admixture tended to premature the setting of UHPC and the start of sudden increase of autogenous shrinkage. Finally, the combined use of shrinkage reducing admixture and expansive admixture appeared to reduce effectively the autogenous shrinkage by about 47% at 15 days.

Ultimate Shear Capacity of Prestressed Girder of Ultra High Performance Fiber Reinforced Concrete (초고강도 섬유보강 콘크리트 프리스트레스트 거더의 극한 전단력)

  • Han, Sang-Mook;Wu, Xiang-Guo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.2
    • /
    • pp.51-58
    • /
    • 2008
  • This study is to investigate the ultimate shear load of prestressed girder made of Ultra High Performance Fiber Reinforced Concrete (UHPFRC). Nine girders were tested until failure in shear. An analytical model to predict the ultimate shear load was formulated based on the Two Bounds Theory. A fiber reinforcing model was constituted based on the random assumption of steel fiber uniform distribution. The predicted values were compared with the conventional predictions and the test results. The proposed equations for computing the ultimate shear strength can be used for the ultimate failure status analysis, which could also be utilized for numerical limit analysis of prestressed UHPFRC girder. The established fiber reinforcing theoretical model can also be a reference for micro-mechanics analysis of UHPFRC.

Constitutive property behavior of an ultra-high-performance concrete with and without steel fibers

  • Williams, E.M.;Graham, S.S.;Akers, S.A.;Reed, P.A.;Rushing, T.S.
    • Computers and Concrete
    • /
    • v.7 no.2
    • /
    • pp.191-202
    • /
    • 2010
  • A laboratory investigation was conducted to characterize the constitutive property behavior of Cor-Tuf, an ultra-high-performance composite concrete. Mechanical property tests (hydrostatic compression, unconfined compression (UC), triaxial compression (TXC), unconfined direct pull (DP), uniaxial strain, and uniaxial-strain-load/constant-volumetric-strain tests) were performed on specimens prepared from concrete mixtures with and without steel fibers. From the UC and TXC test results, compression failure surfaces were developed for both sets of specimens. Both failure surfaces exhibited a continuous increase in maximum principal stress difference with increasing confining stress. The DP tests results determined the unconfined tensile strengths of the two mixtures. The tensile strength of each mixture was less than the generally assumed tensile strength for conventional strength concrete, which is 10 percent of the unconfined compressive strength. Both concretes behaved similarly, but Cor-Tuf with steel fibers exhibited slightly greater strength with increased confining pressure, and Cor-Tuf without steel fibers displayed slightly greater compressibility.

Impact response of ultra-high performance fiber-reinforced concrete filled square double-skin steel tubular columns

  • Li, Jie;Wang, Weiqiang;Wu, Chengqing;Liu, Zhongxian;Wu, Pengtao
    • Steel and Composite Structures
    • /
    • v.42 no.3
    • /
    • pp.325-351
    • /
    • 2022
  • This paper studies the lateral impact behavior of ultra-high performance fiber-reinforced concrete (UHPFRC) filled double-skin steel tubular (UHPFRCFDST) columns. The impact force, midspan deflection, and strain histories were recorded. Based on the test results, the influences of drop height, axial load, concrete type, and steel tube wall thickness on the impact resistance of UHPFRCFDST members were analyzed. LS-DYNA software was used to establish a finite element (FE) model of UHPFRC filled steel tubular members. The failure modes and histories of impact force and midspan deflection of specimens were obtained. The simulation results were compared to the test results, which demonstrated the accuracy of the finite element analysis (FEA) model. Finally, the effects of the steel tube thickness, impact energy, type of concrete and impact indenter shape, and void ratio on the lateral impact performances of the UHPFRCFDST columns were analyzed.

Mechanical properties and assessment of a hybrid ultra-high-performance engineered cementitious composite using calcium carbonate whiskers and polyethylene fibers

  • Wu, Li-Shan;Yu, Zhi-Hui;Zhang, Cong;Bangi, Toshiyuki
    • Computers and Concrete
    • /
    • v.30 no.5
    • /
    • pp.339-355
    • /
    • 2022
  • The high cost of ultra-high-performance engineered cementitious composite (UHP-ECC) is currently a crucial issue, especially in terms of the polyethylene (PE) fibers use. In this paper, cheap calcium carbonate whiskers (CW) were evaluated on the feasibility of hybrid with PE fibers. Diverse combinations of PE fibers and CW were employed to investigate the multi-scale enhancement on the UHP-ECC performance. A probabilistic-based UHP-ECC tensile strain reliability analysis approach was utilized, which was in general agreement with the experimental results. Furthermore, a multi-dimensional integrated representation was conducted for the comprehensive assessment of UHP-ECC. Results illustrated that CW improved the compressive strength and energy dissipation capacity of UHP-ECC owing to the microscopic strengthening mechanism. CW and PE fiber further promoted the saturated cracking of composite by multi-scale crack arresting effect. In particular, PE1.75-CW0.5 specimen possessed the best overall performance. The ultimate cracking width of PE1.75-CW0.5 group had 98 ㎛, which was 46.18% lower compared to PE2-CW0 group, the 28d compressive strength were slightly improved, the tensile strain capacity was comparable to that of PE2-CW0 group. The results above demonstrated that combinations of PE fiber and CW could significantly enhance the comprehensive performance of UHP-ECC, which was beneficial for large-scale engineering applications.

A study on the Evaluation of Surface Properties of UHPC Panels following long-term outdoor exposure (옥외 장기폭로에 따른 UHPC 패널의 표면 특성 평가 연구)

  • Kim, Tae-Ik;Choi, Byung-Keol;Park, Yong-Kyu;Choi, Sang-Hoon;Yoon, Gi-Won;Lee, Dae-Seek
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.176-177
    • /
    • 2022
  • In this study, surface performance evaluation was conducted according to the fiber and surface finishing technique of the exterior material using Ultra High Performance Concrete(UHPC), whitch is spotlighted as a highly durable exterior material. As a result of outdoor exposure, the initial performance of the UHPC Panel using organic fibers was maintained without being affected by the surface finishing technique. In the specimen using steel fiber, the surface performance was maintained when the water repellent treatment was performed in the plain specimen, but fiber corrosion occurred in the specimen to which the surface finishing technique was applied.

  • PDF

A Study the Development of Ultra High Performance Concrete using Liquid Metal Fiber (Liquid Metal Fiber를 이용한 초고성능콘크리트의 개발에 관한 기초연구)

  • Ko, Kwan-Ho;Kwak, Min-Saeg;Ahn, Jung-Hyun;Kim, Wha-Jung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.241-242
    • /
    • 2009
  • This study showsUltra high performance concrete with steel fiber to obtain the high ductillity. the results of high strength concrete specimences with existing steel fiber and liquid metal fiber were compared with them of plain high strength mortal through bending test. The result that the ductility of high strength concrete with liquid metal fiber was superior to that with bundrex steel fiber was found through toughness test mathod like ASTM C 1018, JSCE-SF4.

  • PDF

Assessment on Durability of Ultra-High Strength Cementitious Composites (초고강도 시멘트 복합체의 내구성 평가)

  • Park Jung Jun;Kang Su Tae;Ryu Gum Sung;Lee Jong Suk;Koh Kyung Taek;Kim Do Gyum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.313-316
    • /
    • 2004
  • In this paper, it was assessed durability of ultra-high strength cementitious composites(UHSCC) with the range of 180MPa of compressive strength through the test method of chloride ion resistance, carbonation, freezing-thawing resistance, permeability. In order to compare with ultra-high strength cementitious composites, normal concrete and high-strength concrete were also tested. As the experimental result, it showed that UHSCC was cleary superior to the durability performance of normal concrete and high-strength concrete.

  • PDF