• Title/Summary/Keyword: Ultra-high vacuum

Search Result 232, Processing Time 0.032 seconds

N- and P-doping of Transition Metal Dichalcogenide (TMD) using Artificially Designed DNA with Lanthanide and Metal Ions

  • Kang, Dong-Ho;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.292-292
    • /
    • 2016
  • Transition metal dichalcogenides (TMDs) with a two-dimensional layered structure have been considered highly promising materials for next-generation flexible, wearable, stretchable and transparent devices due to their unique physical, electrical and optical properties. Recent studies on TMD devices have focused on developing a suitable doping technique because precise control of the threshold voltage ($V_{TH}$) and the number of tightly-bound trions are required to achieve high performance electronic and optoelectronic devices, respectively. In particular, it is critical to develop an ultra-low level doping technique for the proper design and optimization of TMD-based devices because high level doping (about $10^{12}cm^{-2}$) causes TMD to act as a near-metallic layer. However, it is difficult to apply an ion implantation technique to TMD materials due to crystal damage that occurs during the implantation process. Although safe doping techniques have recently been developed, most of the previous TMD doping techniques presented very high doping levels of ${\sim}10^{12}cm^{-2}$. Recently, low-level n- and p-doping of TMD materials was achieved using cesium carbonate ($Cs_2CO_3$), octadecyltrichlorosilane (OTS), and M-DNA, but further studies are needed to reduce the doping level down to an intrinsic level. Here, we propose a novel DNA-based doping method on $MoS_2$ and $WSe_2$ films, which enables ultra-low n- and p-doping control and allows for proper adjustments in device performance. This is achieved by selecting and/or combining different types of divalent metal and trivalent lanthanide (Ln) ions on DNA nanostructures. The available n-doping range (${\Delta}n$) on the $MoS_2$ by Ln-DNA (DNA functionalized by trivalent Ln ions) is between $6{\times}10^9cm^{-2}$ and $2.6{\times}10^{10}cm^{-2}$, which is even lower than that provided by pristine DNA (${\sim}6.4{\times}10^{10}cm^{-2}$). The p-doping change (${\Delta}p$) on $WSe_2$ by Ln-DNA is adjusted between $-1.0{\times}10^{10}cm^{-2}$ and $-2.4{\times}10^{10}cm^{-2}$. In the case of Co-DNA (DNA functionalized by both divalent metal and trivalent Ln ions) doping where $Eu^{3+}$ or $Gd^{3+}$ ions were incorporated, a light p-doping phenomenon is observed on $MoS_2$ and $WSe_2$ (respectively, negative ${\Delta}n$ below $-9{\times}10^9cm^{-2}$ and positive ${\Delta}p$ above $1.4{\times}10^{10}cm^{-2}$) because the added $Cu^{2+}$ ions probably reduce the strength of negative charges in Ln-DNA. However, a light n-doping phenomenon (positive ${\Delta}n$ above $10^{10}cm^{-2}$ and negative ${\Delta}p$ below $-1.1{\times}10^{10}cm^{-2}$) occurs in the TMD devices doped by Co-DNA with $Tb^{3+}$ or $Er^{3+}$ ions. A significant (factor of ~5) increase in field-effect mobility is also observed on the $MoS_2$ and $WSe_2$ devices, which are, respectively, doped by $Tb^{3+}$-based Co-DNA (n-doping) and $Gd^{3+}$-based Co-DNA (p-doping), due to the reduction of effective electron and hole barrier heights after the doping. In terms of optoelectronic device performance (photoresponsivity and detectivity), the $Tb^{3+}$ or $Er^{3+}$-Co-DNA (n-doping) and the $Eu^{3+}$ or $Gd^{3+}$-Co-DNA (p-doping) improve the $MoS_2$ and $WSe_2$ photodetectors, respectively.

  • PDF

Effect of Annealing Temperature on the Permeability and Magneto-Impedance Behaviors of Fe68.5Mn5Si13.5B9Nb3Cu1 Amorphous Alloy

  • Le Anh-Than;Ha, Nguyen Duy;Kim, Chong-Oh;Rhee, Jang-Roh;Chau Nguyen;Hoa Nguyen Quang;Tho Nguyen Due;Lee, Hee-Bok
    • Journal of Magnetics
    • /
    • v.11 no.1
    • /
    • pp.55-59
    • /
    • 2006
  • The effect of annealing temperature on the permeability and giant magneto-impedance (GMI) behaviors of $Fe_{68.5}Mn_{5}Si_{13.5}B_9Nb_3Cu_1$ amorphous alloy has been systematically investigated. The nanocrystalline $Fe_{68.5}Mn_{5}Si_{13.5}B_9Nb_3Cu_1$ alloys consisting of ultra-fine $(Fe,Mn)_3Si$ grains embedded in an amorphous matrix were obtained by annealing their precursor alloy at the temperature range from $500^{\circ}C\;to\;600^{\circ}C$ for 1 hour in vacuum. The permeability and GMI profiles were measured as a function of external magnetic field. It was found that the increase of both the permeability and the GMI effect with increasing annealing temperature up to $535^{\circ}C$ was observed and ascribed to the ultrasoft magnetic properties in the sample, whereas an opposite tendency was found when annealed at $600^{\circ}C$ which is due to the microstructural changes caused by high-temperature annealing. The study of temperature dependence on the permeability and GMI effect showed some insights into the nature of the magnetic exchange coupling between nanocrystallized grains through the amorphous boundaries in nanocrystalline magnetic materials.

Effect of the hetero-epitaxial ZnO buffer layer for the formation of As-doped ZnO thin films (Hetero-epitaxial ZnO 버퍼층이 As-doped ZnO 박막의 증착조건에 미치는 영향)

  • Lee, Hong-Chan;Choi, Won-Kook;Shim, Kwang-Bo;Oh, Young-Jei
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.216-221
    • /
    • 2006
  • ZnO thin films prepared by PLD method exhibit an excellent optical property, but may have some problems such as incomplete surface roughness and crystallinity. In this study, undoped ZnO buffer layers were deposited on (0001) sapphire substrates by ultra high vacuum pulse laser deposition (UHV-PLD) and molecular beam epitaxy (MBE) methods, respectively. After post annealing of ZnO buffer layer, undoped ZnO thin films were deposited under different oxygen pressure ($35{\sim}350$ mtorr) conditions. The Arsenic-doped (1, 3 wt%) ZnO thin layers were deposited on the buffer layer of undoped ZnO by UHV-PLD method. The optical property of the ZnO thin films was analyzed by photoluminescence (PL) measurement. The ${\theta}-2{\theta}$ XRD analysis exhibited a strong (002)-peak, which indicates c-axis preferred orientation. Field emission-scanning electron microscope (FE-SEM) revealed that microstructures of the ZnO thin films were varied by oxygen partial pressure, Arsenic doping concentration, and deposition method of the undoped ZnO buffer layer. The denser and smoother films were obtained when employing MBE-buffer layer under lower oxygen partial pressure. It was also found that higher Arsenic concentration gave the enhanced growing of columnar structure of the ZnO thin films.

Properties of Diamond-like Carbon(DLC) Thin Films deposited by Negative Ion Beam Sputter (I) (Negative ion beam sputter 법으로 증착한 DLC 박막의 특성 (I))

  • Kim, Dae-Yeon;Gang, Gye-Won;Choe, Byeong-Ho
    • Korean Journal of Materials Research
    • /
    • v.10 no.7
    • /
    • pp.459-463
    • /
    • 2000
  • Direct use of negative ions for modification of materials has opened new research such as charging-free ion implantation and new materials syntheses by pure kinetic bonding reactions. For these purposes, a new solid-state ce-sium ion source has been developed in the laboratory scale. In this paper, diamond like carbon(DLC) films were prepared on silicon wafer by a negative cesium ion gun. This system does not need any gas in the chamber; deposition occurs under high vacuum. The ion source has good control of the C- beam energy(from 80 to 150eV). The result of Raman spectrophotometer shows that the degree of diamond-like character in the films, $sp^3$ fraction, increased as ion beam energy increases. The nanoindentation hardness of the films also increases from 7 to 14 GPa as a function of beam energy. DLC films showed ultra-smooth surface(Ra~1$\AA$)and an impurity-free quality.

  • PDF

The Effects of Sulfur on the Catalytic Reaction between Carbon Monoxide and Nitric Oxide on Polycrystalline Platinum Surface (다결정 백금표면에서의 일산화탄소와 일산화질소의 촉매반응에 미치는 황의 영향)

  • Park, Youn-Seok;Kim, Young-Ho;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.1 no.2
    • /
    • pp.215-223
    • /
    • 1990
  • The effects of sulfur on the catalytic reaction between CO and NO on polycrystalline Pt surface, which is very important in the development of catalyst for automobile exhaust gas control, have been studied using thermal desorption spectrometry(TDS) under ultra-high vacuum(UHV) conditions. Sulfur weakened both the adsorptions of CO and NO by direct site blocking and indirect electronic effect. S(a) desorbing below 800 K gave little effect on reaction activity whereas S(a) desorbing above 800 K, which adsorbs as an atomic state, gave much effect on it. The adsorbed sulfur existed on the surface of platinum in the form of islands, and also reduced the adsorption energies of adsorbates by the long-ranged electronic effect. The platinum catalyst in the reaction between CO and NO was poisoned selectively by S(a), poisoning firstly the active sites of this reaction.

  • PDF

A Study on the Reaction between Carbon Monoxide and Nitric Oxide on Platinum Catalyst (백금촉매상에서 일산화탄소와 일산화질소의 반응에 관한 연구)

  • Park, Youn-Seok;Kim, Young-Ho;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.1 no.2
    • /
    • pp.207-214
    • /
    • 1990
  • The catalytic reaction between CO and NO on polycrystalline Pt surface, which is very important in the development of catalyst for automobile exhaust gas control, has been studied using thermal desorption spectrometry(TDS) and steady-state experiment under ultra-high vacuum(UHV) conditions. With the pressures of CO and NO of each $1{\times}10^{-7}Torr$, the $CO_2$ formation rate showed a maximum at 560K. At the reaction temperature of 560K and the NO pressure of $1{\times}10^{-7}Torr$, the production of $CO_2$ was first order in $CO_2$ was first order in CO pressure below $1.35{\times}10^{-7}Torr$ of CO pressure whereas at higher CO pressures the rate became minus 0.3 order in CO. But the efforts of reactant pressure on the reaction was understood in consideration of the surface concentrations of adsorbates. With the results, we proposed a new reaction mechanism for this reaction.

  • PDF

Full validation of high-throughput bioanalytical method for the new drug in plasma by LC-MS/MS and its applicability to toxicokinetic analysis

  • Han, Sang-Beom
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2006.11a
    • /
    • pp.65-74
    • /
    • 2006
  • Modem drug discovery requires rapid pharmacokinetic evaluation of chemically diverse compounds for early candidate selection. This demands the development of analytical methods that offer high-throughput of samples. Naturally, liquid chromatography / tandem mass spectrometry (LC-MS/MS) is choice of the analytical method because of its superior sensitivity and selectivity. As a result of the short analysis time(typically 3-5min) by LC-MS/MS, sample preparation has become the rate- determining step in the whole analytical cycle. Consequently tremendous efforts are being made to speed up and automate this step. In a typical automated 96-well SPE(solid-phase extraction) procedure, plasma samples are transferred to the 96-well SPE plate, internal standard and aqueous buffer solutions are added and then vacuum is applied using the robotic liquid handling system. It takes only 20-90 min to process 96 samples by automated SPE and the analyst is physically occupied for only approximately 10 min. Recently, the ultra-high flow rate liquid chromatography (turbulent-flow chromatography)has sparked a huge interest for rapid and direct quantitation of drugs in plasma. There is no sample preparation except for sample aliquotting, internal standard addition and centrifugation. This type of analysis is achieved by using a small diameter column with a large particle size(30-5O ${\mu}$m) and a high flow rate, typically between 3-5 ml/min. Silica-based monolithic HPLC columns contain a novel chromatographic support in which the traditional particulate packing has been replaced with a single, continuous network (monolith) of pcrous silica. The main advantage of such a network is decreased backpressure due to macropores (2 ${\mu}$m) throughout the network. This allows high flow rates, and hence fast analyses that are unattainable with traditional particulate columns. The reduction of particle diameter in HPLC results in increased column efficiency. use of small particles (<2 urn), however, requires p.essu.es beyond the traditional 6,000 psi of conventional pumping devices. Instrumental development in recent years has resulted in pumping devices capable of handling the requirements of columns packed with small particles. The staggered parallel HPLC system consists of four fully independent binary HPLC pumps, a modified auto sampler, and a series of switching and selector valves all controlled by a single computer program. The system improves sample throughput without sacrificing chromatographic separation or data quality. Sample throughput can be increased nearly four-fold without requiring significant changes in current analytical procedures. The process of Bioanalytical Method Validation is required by the FDA to assess and verify the performance of a chronlatographic method prior to its application in sample analysis. The validation should address the selectivity, linearity, accuracy, precision and stability of the method. This presentation will provide all overview of the work required to accomplish a full validation and show how a chromatographic method is suitable for toxirokinetic sample analysis. A liquid chromatography/tandem mass spectrometry (LC-MS/MS) method developed to quantitate drug levels in dog plasma will be used as an example of tile process.

  • PDF

Novel synthesis of nanocrystalline thin films by design and control of deposition energy and plasma

  • Han, Jeon G.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.77-77
    • /
    • 2016
  • Thin films synthesized by plasma processes have been widely applied in a variety of industrial sectors. The structure control of thin film is one of prime factor in most of these applications. It is well known that the structure of this film is closely associated with plasma parameters and species of plasma which are electrons, ions, radical and neutrals in plasma processes. However the precise control of structure by plasma process is still limited due to inherent complexity, reproducibility and control problems in practical implementation of plasma processing. Therefore the study on the fundamental physical properties that govern the plasmas becomes more crucial for molecular scale control of film structure and corresponding properties for new generation nano scale film materials development and application. The thin films are formed through nucleation and growth stages during thin film depostion. Such stages involve adsorption, surface diffusion, chemical binding and other atomic processes at surfaces. This requires identification, determination and quantification of the surface activity of the species in the plasma. Specifically, the ions and neutrals have kinetic energies ranging from ~ thermal up to tens of eV, which are generated by electron impact of the polyatomic precursor, gas phase reaction, and interactions with the substrate and reactor walls. The present work highlights these aspects for the controlled and low-temperature plasma enhanced chemical vapour disposition (PECVD) of Si-based films like crystalline Si (c-Si), Si-quantum dot, and sputtered crystalline C by the design and control of radicals, plasmas and the deposition energy. Additionally, there is growing demand on the low-temperature deposition process with low hydrogen content by PECVD. The deposition temperature can be reduced significantly by utilizing alternative plasma concepts to lower the reaction activation energy. Evolution in this area continues and has recently produced solutions by increasing the plasma excitation frequency from radio frequency to ultra high frequency (UHF) and in the range of microwave. In this sense, the necessity of dedicated experimental studies, diagnostics and computer modelling of process plasmas to quantify the effect of the unique chemistry and structure of the growing film by radical and plasma control is realized. Different low-temperature PECVD processes using RF, UHF, and RF/UHF hybrid plasmas along with magnetron sputtering plasmas are investigated using numerous diagnostics and film analysis tools. The broad outlook of this work also outlines some of the 'Grand Scientific Challenges' to which significant contributions from plasma nanoscience-related research can be foreseen.

  • PDF

Influence of Sustaining Frequency on the luminous Efficiency in AC-PDP (교류형 플라즈마 디스플레이에 있어서 유지방전 주파수에 따른 발광 효율에 미치는 영향)

  • 정의선;김대일
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.6
    • /
    • pp.1-5
    • /
    • 2000
  • Recently alternating-current Plasma Display Panel(AC-PDP) is in the spotlight as a digital television and high definition television. The panel structure widely adapted in commercial AC-PDP is three electrodes surface discharge type. At present time, the luminous efficiency is around 1lm/W, it should be a key factor for the commercialization. For the high luminous efficiency, the development of panel structure is necessary. At a given panel structure, a driving method should be optimized to get a sufficient luminous efficiency. The display image of AC-PDP could be realized by the repeated light emission from the discharge. Because most of discharge power is consumed in the sustaining period, the optimization of sustaining waveform is very important for the high luminous efficiency. ADS (Address and Display period Separated) driving method is commonly used. The average driving frequency of ADS driving method is ranged by several tens kilo of [kHz], however the actual frequency of sustaining period is in range of 100[kHz] to 200[kHz]. Based on this study, when the phosphor emits the visible light, it has a decay time of few milliseconds due to the material transfer to the phosphor to emit the visible light. Consequently the luminous efficiency decreases in proportion to the driving frequency. It is found that the luminous efficiency could be significantly improved by the low frequency sustaining driving method.

  • PDF

Study on Structural Changes and Electromagnetic Interference Shielding Properties of Ti-based MXene Materials by Heat Treatment (열처리에 의한 Ti 기반 MXene 소재의 구조 변화와 전자파 간섭 차폐 특성에 관한 연구)

  • Han Xue;Ji Soo Kyoung;Yun Sung Woo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.3
    • /
    • pp.111-118
    • /
    • 2023
  • MXene, a two-dimensional transition metal carbide or nitride, has recently attracted much attention as a lightweight and flexible electromagnetic shielding material due to its high electrical conductivity, good mechanical strength and thermal stability. In particular, the Ti-based MXene, Ti3C2Tx and Ti2CTx are reported to have the best electrical conductivity and electromagnetic shielding properties in the vast MXene family. Therefore, in this study, Ti3C2Tx and Ti2CTx films were prepared by vacuum filtration using Ti3C2Tx and Ti2CTx dispersions synthesized by interlayer metal etching and centrifugation of Ti3AlC2 and Ti2AlC. The electrical conductivity and electromagnetic shielding efficiency of the films were measured after heat treatment at high temperature. Then, X-ray diffraction and photoelectron spectroscopy were performed to analyze the structural changes of Ti3C2Tx and Ti2CTx films after heat treatment and their effects on electromagnetic shielding. Based on the results of this study, we propose an optimal structure for an ultra-thin, lightweight, and high performance MXene-based electromagnetic shielding film for future applications in small and wearable electronics.