• 제목/요약/키워드: Ultra-Precision machining

검색결과 300건 처리시간 0.024초

비구면 초정밀절삭 공정기술에 관한 연구 (A study on Ultra Precision machining process for Aspheric)

  • 김건희;홍권희;김효식;김현배;양순철;윈종호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.90-93
    • /
    • 2003
  • This paper described about the ultra-precision profile measurement of aspheric surfaces using contact probing technique. A contact probe has been designed as a sensing device to obtain measuring resolutions in nanometer regime utilizing a circle leaf spring mechanism and a capacitive-type sensor. The, contact probe is attached on the z-axis during measurement while aspheric object are supported on the diamond turning machine(DTM). The machine xz-axis motions are monitored by a set of two orthogonal plane mirror type laser interferometers. Experimental results show that the contact probing technique developed of on-machine measurement system in this investigation is capable of providing a repeatability of 10 nanometers with a $\pm$20 uncertainty of 200nmPv.

  • PDF

신개념 머시닝센터의 신뢰성 향상 설계기술 (High Reliability Design for New Concept Machining Center)

  • 이찬홍;김양진
    • 한국정밀공학회지
    • /
    • 제28권8호
    • /
    • pp.894-903
    • /
    • 2011
  • In this paper, the capability index is introduced in order to improve the reliability of new concept machine tools and the method to improve the machine accuracy from the analysis of cutting process, statistical methodology and influence factors are proposed. In addition, the rib structure of bed and column in machine tools is analyzed by using the thermal impact method in order to analogize the rib pattern which has the small thermal deformation under thermal boundary condition. In the analysis of column rib structure, thermal boundary condition is separated to heat conduction and heat transfer to appropriate real boundary condition. Finally, performance chart of bed and column rib structure is provided for designer to estimate each rib pattern and select rib structure appropriating to thermal condition.

초정밀 가공기의 개발 동향 및 기술적 이슈 (Current Status and Technical Issues of Ultra-precision Machine Tools)

  • 오정석;김창주;박천홍;최영재
    • 한국정밀공학회지
    • /
    • 제31권3호
    • /
    • pp.189-197
    • /
    • 2014
  • Diffractive optical elements (DOEs) - in general a complex pattern of micro- and nano-scale structures - can modulate and transform light in a predetermined way. Their importance is being increased nowadays because they can be designed to handle a number of simultaneous tasks. In view point of machining DOEs, it is a big challenge to fabricate micro- and nano-scale structures on a free-form surfaces. In this paper, the state-of-the-art of the ultra-precision machine tools is reviewed. Also some technical issues which determine the machine tool accuracy are discussed.

초정밀 가공기계 베드 구조물용 에폭시-그래나이트재의 특성에 관한 연구 (Characteristics of Epoxy-Granite Composite Material For Ultra-Precision Machine Bed Structures)

  • 김종호;원시태;맹희영;박영일
    • 한국정밀공학회지
    • /
    • 제7권2호
    • /
    • pp.74-84
    • /
    • 1990
  • The machine tool structures for ultra-precision machining muxt be manufactured with materials which have high static and dynamic stiffness, high damping, a long term dimensional and thermal stability. This study aims at the development of new composite material Epoxy-Granite which exhibits the satisfactory characteristics as a material of ultra-precision mchine tool bed. The Epoxy-Granite testpieces that use epoxy resins as a binder and granite particles as a aggregate have been manufactured so as to examine the material properties about mechanical, thermal and damping characteristics. Experiments were carried out to obtain the proper manufacturing conditions of Expoxy-Granite specimens by varying the several testing conditions such as types of epoxy resins, particle sizes of granite and mixture ratio of epoxy resin and aggregate. Also, when Epoxy-Granite was compared with cast iron, GRANITAN which was imported from CMS of U.K. and granite materials, it has exhibited the superior or almost the same mechanical and damping properties and thermal conductivity, except for the thermal expansion.

  • PDF

Abrasive Film Polishing을 이용한 SUS-304의 표면거칠기·잔류응력 분석 (An analysis on the surface roughness and residual stress of SUS-304 using abrasive film polishing)

  • 신봉철;김병찬;임동욱;민경호
    • Design & Manufacturing
    • /
    • 제12권2호
    • /
    • pp.16-21
    • /
    • 2018
  • Recently, as the demand for high-precision parts increases due to industrial development, a machine tool system for ultra-precision machining and polishing has been actively developed. As a result, there is an increasing demand for ultra-precision surface roughness along with dimensional processing. However, due to the increase in processing time due to the demand for ultra-precise surfaces and enormous facility investment, it is difficult to secure competitiveness. The polishing process using the abrasive film in super precision machining has been applied to machines, electronic devices, aerospace, and medical fields. Super finishing using the abrasive film which is applied in the industrial field recently can achieve high surface roughness in a short time. Super finishing using the abrasive film which is applied in the industrial field recently can achieve high surface roughness in a short time. Also, application of industrial field is increasing due to advantages such as low noise and low dust. Recently, researches on stainless steel having strong resistance to corrosion, heat resistance, heat resistance, toughness and weldability have been actively conducted with respect to the nuclear energy industry or marine development. Therefore, in this study, surface roughness and residual stress were measured after SUS304 polishing using dynamic analysis of film polishing apparatus and polishing film.