• 제목/요약/키워드: Ultra-Fine Grains

검색결과 41건 처리시간 0.025초

기계적합금화 방법에 의한 Nanostructured W-Cu 합금의 제조 및 물성연구(I) (On Properties and Synthesis of Nanostructured W-Cu Alloys by Mechanical Alloying(I))

  • 김진천
    • 한국분말재료학회지
    • /
    • 제4권2호
    • /
    • pp.122-132
    • /
    • 1997
  • Nanostructured(NS) W-Cu composite powders of about 20~30 nm grain size were synthesized by mechanical alloying. The properties of NS W-Cu powder and its sintering behavior were investigated. It was shown from X-ray diffraction and TEM analysis that the supersaturated solid solution of Cu in W was not formed by the mechanical alloying of mixed elemental powders, but the mixture of W and Cu particles with nanosize grains, i.e., the nanocomposite powder was attained. Nanocomposite W-20wt%Cu and W-30wt%Cu powders milled for 100 h were sintered to the relative density more than 96% and 98%, respectively, by sintering at 110$0^{\circ}C$ for 1 h in $H_2$. Such a high sinterability was attributed to the high homogeneous mixing and ultra-fine structure of W and Cu phases as well as activated sintering effect by impurity metal introduced during milling.

  • PDF

다단 ECAP 공정에서 pure-Zr 의 변형거동해석 (Deformation Behavior Analysis of pure-Zr during Equal Channel Multi-Angular Pressing)

  • 노일주;권기환;채수원;권숙인;김명호;황선근
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.531-536
    • /
    • 2003
  • Equal channel angular pressing (ECAP) has been employed to produce materials with ultra-fine grains that have high strength and high corrosion resistance properties. In order to obtain super plastic deformation during ECAP, multipass angular pressing is frequently employed. In this paper, three-dimensional finite element analyses have been performed to investigate the deformation behavior of pure-Zr specimen and the effects of process parameters for equal channel multi-angular pressing (ECMAP) process. The results have been compared with some experimental results

  • PDF

등통로각압축(ECAP)공정에서 순수 지르코늄의 변형거동에 대한 3차원 유한요소 해석 (Three Dimensional Finite Element Analysis of the Deformation Behavior of pure-Zr during Equal Channel Angular Pressing)

  • 이강무;권기환;권숙인;김명호;황선근;채수원
    • 대한기계학회논문집A
    • /
    • 제27권9호
    • /
    • pp.1539-1545
    • /
    • 2003
  • A lot of researches have been performed on the equal channel angular pressing (ECAP) which produces ultra-fine grains. Along with the experiments, the finite element method has been widely employed to investigate the deformation behavior of specimen during ECAP and the effects of process parameters of ECAP. In this paper, pure-Zirconium is considered for ECAP process by using three-dimensional finite element analysis. The results have been compared with those of previous two-dimensional analysis and with the experimental results

Effect of Annealing Temperature on the Permeability and Magneto-Impedance Behaviors of Fe68.5Mn5Si13.5B9Nb3Cu1 Amorphous Alloy

  • Le Anh-Than;Ha, Nguyen Duy;Kim, Chong-Oh;Rhee, Jang-Roh;Chau Nguyen;Hoa Nguyen Quang;Tho Nguyen Due;Lee, Hee-Bok
    • Journal of Magnetics
    • /
    • 제11권1호
    • /
    • pp.55-59
    • /
    • 2006
  • The effect of annealing temperature on the permeability and giant magneto-impedance (GMI) behaviors of $Fe_{68.5}Mn_{5}Si_{13.5}B_9Nb_3Cu_1$ amorphous alloy has been systematically investigated. The nanocrystalline $Fe_{68.5}Mn_{5}Si_{13.5}B_9Nb_3Cu_1$ alloys consisting of ultra-fine $(Fe,Mn)_3Si$ grains embedded in an amorphous matrix were obtained by annealing their precursor alloy at the temperature range from $500^{\circ}C\;to\;600^{\circ}C$ for 1 hour in vacuum. The permeability and GMI profiles were measured as a function of external magnetic field. It was found that the increase of both the permeability and the GMI effect with increasing annealing temperature up to $535^{\circ}C$ was observed and ascribed to the ultrasoft magnetic properties in the sample, whereas an opposite tendency was found when annealed at $600^{\circ}C$ which is due to the microstructural changes caused by high-temperature annealing. The study of temperature dependence on the permeability and GMI effect showed some insights into the nature of the magnetic exchange coupling between nanocrystallized grains through the amorphous boundaries in nanocrystalline magnetic materials.

다단 ECAP 공정에서 단면 형상의 영향 연구 (A Study on the Effect of Sectional Shape Change during Equal Channel Multi-Angular Pressing Process)

  • 고성광;채수원;권숙인;김명호;황성근
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1975-1979
    • /
    • 2005
  • Equal channel angular pressing has been employed to produce materials with ultra-fine grains that have high strength and high corrosion resistance properties. Along with the experiments, the finite element method has been widely performed to investigate the deformation behavior of specimen and the effects of process parameters of ECAP. In general, several steps of ECAP have been repeatedly executed. In this paper, the effects of sectional shape change have been investigated during ECMAP (RouteA, RouteC) with pure-Zr by using three-dimensional finite element analysis. The results have been compared with the experimental results.

  • PDF

등통로각압축공정을 통한 결정립의 균질한 초미세립화에 대한 고찰 (Evaluation of Homogeneous Ultra-fine Grain Refinements via Equal Channel Angler Pressing Process)

  • 김우열;이학현;서승재;이재근;윤태식;김형섭
    • 소성∙가공
    • /
    • 제27권4호
    • /
    • pp.222-226
    • /
    • 2018
  • Severe plastic deformation (SPD) is a promising method for drastically enhancing the mechanical properties of the materials by grain refinement of metallic materials. However, inhomogeneous deformation during the SPD process results in the inhomogeneous microstructure of the SPD-processed material. We manufactured cylindrical copper specimens of 42 mm in diameter with ultrafine grains (UFG) using an equal channel angular pressing (ECAP) to figure out the relationship between homogeneous microstructure and the number of the processing passes. Two specimens, which are ECAP-processed 4 times (4pass) and 6 times (6pass) each with Route Bc, are prepared for comparison of mechanical properties and microstructure. The results show that the mechanical properties of the two specimens (4pass and 6pass) are similar. Moreover, both the specimens show highly enhanced mechanical properties. The 4pass specimen, however, shows inhomogeneity in hardness distribution, while the 6pass specimen shows a homogeneous distribution. Microstructure analysis reveals that the 4pass specimen has an inhomogeneous microstructure with incompletely refined grain structure. This inhomogeneity of the 4pass specimen could be explained by the circumferential rotation during ECAP process.

Hybrid 구조의 Fe계 연자성 박막의 특성 (Properties of Fe-based Soft magnetic Thin Film with Hybrid Structures)

  • 송재성;이원재;허정섭;김현식;오영우
    • 한국전기전자재료학회논문지
    • /
    • 제13권11호
    • /
    • pp.963-968
    • /
    • 2000
  • Magnetic properties and microstructures of Fe$\_$93-x/Zr$_3$B$_4$Ag$\_$x/ thin films were investigated as a function of addition of element Ag, (X$\_$Ag/=0 to 6 at.%) and annealing temperature, T$\_$a/=300$\^{C}$ to 600$\^{C}$. In the case of adding Ag, magnetic properties of Fe$\_$93-x/Zr$_3$B$_4$Ag$\_$x/ thin films were improved than those of Ag-free Fe$\_$93/Zr$_3$B$_4$thin films. The prominent soft magnetic properties with coercivity of 1.1 Oe, saturation magnetization of 2.2 T and permeability of 5400 at 50㎒ were obtained from Fe$\_$88/Zr$_3$B$_4$Ag$\_$5/ thin film annealed was lower than that of Fe-base or Co-base thin films reported previously. Such enhanced magnetic properties are presumably attributed to the format in ultra fine grains. Also, the reduced eddy current loss in the annealed sample is due to refined micro magnetic domains with increasing the amount of Ag in Fe$\_$93-x/Zr$_3$B$_4$Ag$\_$x/ thin films.

  • PDF

MR fluid를 이용한 알루미늄 표면의 초정밀 연마 방법 (A Study on the Ultra Precision Polishing Method of Aluminum Surface Using MR Fluids)

  • 임동욱;김병찬;홍광표;조명우
    • Design & Manufacturing
    • /
    • 제11권2호
    • /
    • pp.20-24
    • /
    • 2017
  • Recent industrial developments are constantly advancing, and rapid technological development is demanding high technology level in related fields. The need for polishing is increasing even more to improve quality. In order to improve the surface quality, the final finishing process or polishing process is a very important part. Research on super precise polishing method using MR fluid is actively being carried out in domestic and foreign countries. Fine magnetic abrasive grains are aligned in the direction of a magnetic force line formed by a magnetic field and serve as a brush to polish a metal surface. This method has the advantage that the shape of the tool is not fixed and is not affected by the shape of the workpiece or the machining area. We will design the electromagnets for the MR polish polishing system and apply the magnetic field analysis using the magnetic field analysis program (ANSYS). The data obtained through this process suggests an efficient method to increase the magnetic flux density important for polishing. We will investigate the influence of the Al6061-T6 specimen on the surface of the MR polishing machine based on the optimized design.

초초임계압 발전용 소재의 장시간 열처리에 따른 미세조직 변화와 기계적 특성의 상관관계 연구 (A Study on Correlation of Microstructural Degradation and Mechanical Properties of 9-12%Cr-Steel for Ultra-Super Critical Power Generation)

  • 주성욱;유정훈;신기삼;허성강;이재현;석진익;김정태;김병훈
    • 한국재료학회지
    • /
    • 제15권1호
    • /
    • pp.19-24
    • /
    • 2005
  • For the good combination of high-temperature strength, toughness and creep property, $9-12\%$ chromium steels are often used for gas turbine compressors, steam turbine rotors, blade and casing. In this study, the correlation of microstructural evolution and mechanical properties was investigated fur the specimens heat-treated at 600, 650 and $700^{\circ}C$ for 1000, 3000 and 5000 hrs. The microstructure of as-received specimen was tempered martensite with a high dislocation density, small sub-grains and fine secondary phase such as $M_23C_6$. Aging for long-time at high temperature caused the growth of martensite lath and the decrease of dislocation density resulting in the decrease in strength. However, the evolution of secondary phases had influence on hardness, yield strength and impact property. In the group A specimen aged at $600^{\circ}C\;and\;650^{\circ}C$, Laves phase was observed. The Laves phase caused the increase of the hardness and the decrease of the impact property. In addition, the abrupt growth of secondary phases caused decrease of the impact property in both A and B group specimens.

석출강화형 극저탄소강의 특성에 대한 고찰 (Characteristics of Precipitation Hardened Extra Low Carbon Steels)

  • 윤정봉;김성일;김인배
    • 대한금속재료학회지
    • /
    • 제46권10호
    • /
    • pp.609-616
    • /
    • 2008
  • Conventional bake-hardenable(BH) steels should be annealed at higher temperatures because of the addition of Ti or/and Nb which forms carbides and raises recrystallization start temperature. In this study, the development of new BH steels without Ti or Nb addition has been reviewed. The new BH steels have nearly same mechanical properties as the conventional BH steels even though it is annealed at lower temperature. The steels also show smaller deviation of the mechanical properties than that of the conventional BH steels because of the conarol of solute carbon content during steel making processes. The deviation of mechanical properties in conventional BH steels is directly dependent on the deviation of solute carbon which is greatly influenced by the amount of the carbide formers in conventional BH steels. Less alloy addition in the newly developed BH steels gives economical benefits. By taking the advantage of sulfur and/or nitrogen which scarenge in Interstitial-Free or conventional BH steels, fine manganese sulfides or nano size copper sulfides were designed to precipitate, and result in refined ferrite grains. Aluminum nitrides used as a precipitation hardening element in the developed steels were also and resull in fine and well dispersed. As a result, the developed steels with less production cost and reduced deviation of mechanical properties are under commercial production. Note that the developed BH steels are registered as a brand name of MAFE(R) and/or MAF-E(R).