• Title/Summary/Keyword: Ultra lean condition

Search Result 17, Processing Time 0.024 seconds

The Effect of Multi-ignition Strategy on the Combustion and Emission Characteristics in a Ultra Lean Burn GDI Engine (초희박 GDI엔진에서 다단점화에 의한 연소 및 배기 특성)

  • Park, Cheol-Woong;Kim, Sung-Dae;Kim, Hong-Suk;Oh, Hee-Chang;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.106-112
    • /
    • 2012
  • Since air pollution problem by emissions from automotive vehicles has become social issues, lean-burn gasoline direct injection (GDI) engine is focused as an alternative to meet the requirement of reinforced emission regulation and improved fuel consumption. Spray-guided type DI combustion is promising technology, which characterized by the centrally mounted injector and closely positioned spark plug, since stable lean combustion can be realized even at ultra-lean mixture condition. In the present study, the effect of multi-ignition with developed charge coil on combustion and emission characteristics was investigated in optical accessible single cylinder engine. In order to fully understand the in-cylinder phenomena and the mechanisms of emission production, optical diagnostics, such as flame visualization was also carried out at frequently using operating condition. Multi-ignition is effective to improve fuel economy but increase NOx emission at flammability limit.

An Investigation on the Proper Hydrogen Mixing Rate in Heavy-Duty Hydrogen-CNG Engine (수소-천연가스 혼합연료기관의 최적 수소 분사율 검토)

  • LlM, H.S.;KIM, Y.Y.;LEE, JONG T.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.2
    • /
    • pp.89-97
    • /
    • 2004
  • A heavy duty hydrogen enriched CNG engine has the possibility to obtain stable operation at ultra lean condition and to reduce emission extremely. And it can also serve as a so called bridge technology between the current fossil fueled engine and the future hydrogen power system. The emission, torque and brake thermal efficiency characteristics of a heavy-duty hydrogen-CNG engine were investigated to determine the proper mixing rate of hydrogen and CNG. It was found that the proper mixing rates at ${\lambda}=1.4$ and ${\lambda}=1.6$ were around 20% and 30% for hydrogen addition rate respectively.

An Investigation of Combustion and EmissionCharacteristics in Heavy-Duty Hydrogen-CNG Engine (중대형 수소-천연가스 기관의 수소혼합율 변화에 대한 연소 및 배기특성)

  • LIM, H.S.;KIM, Y.Y.;LEE, J.T.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.3
    • /
    • pp.276-282
    • /
    • 2003
  • A hydrogen enriched CNG engine can be stably operated at ultra lean condition and reduce emission extremely. It also has advantage to increase gradually the use of hydrogen for the coming hydrogen-energy age. In this studies, the combustion and emission characteristics of heavy-duty hydrogen-CNG engine were investigated to verify the enhancement of performance by enriched hydrogen into natural gas. The results showed that a hydrogen-CNG engine could achieve ultra lean operation and low emission, while power was reduced by the decrease of intake air flow.

Quasi-dimensional Analysis of Combustion and Emissions in a Stratified GDI Engine under Ultra-lean Conditions (유사차원해석 모델을 이용한 초희박 조건에서의 가솔린 직분사 엔진 연소 및 배기 예측)

  • Lee, Jaeseo;Huh, Kang Yul;Kwon, Hyuckmo;Park, Jae In
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.4
    • /
    • pp.402-409
    • /
    • 2015
  • In this study a quasi-dimensional model is developed to predict the combustion process and emissions of a GDI engine under ultra-lean conditions. Combustion of a GDI engine condition is modeled as two simultaneous processes to consider significant fuel stratification. The first process is premixed flame propagation described as burning in a hemispherically propagating flame. The second is diffusion-controlled combustion modeled as mixing of multiple spray zones in the burned gas region. Mixing is an important factor in ultra-lean conditions leaving stratified mixture of developing sprays behind the propagating premixed flame. Sheet breakup and Hiroyasu models are applied to predict the velocity of a hollow cone spray. Validation is performed against measured pressures and NOx and CO emissions at different load and rpm conditions in the test engine.

A Study on the Combustion Characteristics with Control Strategy and Injector Position Changes in a Lean-burn LPG Direct Injection Engine (연소제어 전략 및 분사기 위치 변경에 따른 직접분사식 초희박 LPG 엔진의 연소특성 연구)

  • Park, Cheolwoong;Park, Yunseo;Lee, Yonggyu;Oh, Seungmook;Kim, Taeyoung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.98-104
    • /
    • 2014
  • The technologies employing spray-guided type combustion system for ultra-lean combustion direct injection engine is focused as a promising technology for satisfying emission regulations and improving fuel economy. In the present study, control and design optimization of lean-burn LPG direct injection engine was carried out with control strategy and injection position changes. Inter-injection spark ignition strategy was applied and the effect of the strategy was assessed at relatively higher load operation condition than previous researches. In order to create richer mixture in the vicinity of spark plug electrode, relative distance between the dead-end of injector and the electrode of spark plug was changed.

Investigation on the Injection Timing and Double Ignition Method for Heavy-duty LPG SI Lean Burn Engine (액상분사식 대형 LPG 희박연소엔진의 분사시기 및 이점점화에 관한 연구)

  • 김창업;오승묵;강건용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.92-98
    • /
    • 2003
  • An LPG engine for heavy-duty vehicles has been developed using liquid phase LPG injection (hereafter LPLi) system which has regarded as one of the next generation LPG fuel supply systems. In this wort to investigate the lean bum characteristics of heavy-duty LPLi engine, various injection timing (SOI, start of injection) and double ignition method were tested. The results showed that lean misfire limit of LPLi engine could be extended. by 0.2 $\lambda$ value, using the optimal SOI timing in LPLi system. Double ignition method test was carried out by installing the second spark plug and modified ignition circuit to ignite two spark plugs simultaneously. Double ignition resulted in the stable combustion under ultra lean bum condition, below $\lambda=1.7$, and extension of lean misfire limit compare to ordinary case. Therefore, LPLi engine with optimal SOI and double ignition method could be normally operated at around $\lambda=1.9$ and showed higher engine performance.

A Study on the Application of the Lean Boosting in a Hydrogen-fueled Engine with the SI and the External Mixture (흡기관 분사식 수소 SI기관의 희박과급 적용에 관한 연구)

  • Lee, Kwangju;Lee, Jonggoo;Lee, Jongtai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.2
    • /
    • pp.136-141
    • /
    • 2013
  • In order to achieve simultaneously the ultra-low NOx, the high power and the high efficiency in a hydrogen-fueled engine with SI and the external mixture, the effects of low temperature combustion, performance and exhaust are compared and analyzed by the application of the lean boosting. As the results, the decrease rate of the high temperature in the hydrogen is less decreased than the other fuels by high constant-volume specific heat. However, when the conditions of 1.7bar and ${\Phi}=0.33$ are reached by the lean boosting, the maximum gas temperature of hydrogen is decreased under the temperature of NOx formation and it is possible to stabilize combustion below 2% of COVimep. Also, at that condition, it is feasible to achieve simultaneously NOx-free and the power of gasoline level. Therefore, it is found that the lean boosting is useful in the hydrogen-fueled engine.

The Limit Compression Ratio of Knock Occurring by $R_{dH2}$ in the Heavy Duty Hydrogen-CNG Fueled Engine (대형 수소-천연가스 기관의 수소첨가율에 따른 노크발생 한계압축비)

  • Kim, Yong-Tae;Lee, Jong-Tai
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.84-91
    • /
    • 2006
  • A heavy duty hydrogen-natural gas fueled engine can obtain stable operation at ultra lean conditions and reduce emissions extremely. Reduction of $CO_2$ in its engine is one of the most benefit. In this study, rate of hydrogen addition($R_{dH2}$) and compression ratio($\varepsilon$) were investigated including performance of this engine. As results, it was found that phenomenon of pressure oscillation when increasing $R_{dH2}$ and $\varepsilon$, it means occurring knock. It consider that pressure oscillation was increased due to fast burning speed of hydrogen. Even if same compression ratio, pressure oscillation was remarkable increased according to increasing $R_{dH2}$. Therefore, limit compression ratio of knock occurring was reduced by increasing $R_{dH2}$.

COMPARISON OF THE COMBUSTION CHARACTERISTICS BETWEEN S.I. ENGINE AND R.I. ENGINE

  • Chung, S.S.;Ha, J.Y.;Park, J.S.;Kim, K.J.;Yeom, J.K.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.19-25
    • /
    • 2007
  • This experimental study was carried out to obtain both low emissions and high thermal efficiency by rapid bulk combustion. Two kinds of experiments were conducted to obtain fundamental data on the operation of a RI engine by a radical ignition method. First, the basic experiments were conducted to confirm rapid bulk combustion by using a radical ignition method in a constant volume chamber (CVC). In this experiment, the combustion velocity was much higher than that of a conventional method. Next, to investigate the desirable condition of engine operation using radical ignition, an applied experiment was conducted in an actual engine based on the basic experiment results obtained from CVC condition. A sub-chamber-type diesel engine was reconstructed using a SPI type engine with controlled injection duration and spark timing, and finally, converted to a RI engine. In this study, the operation characteristics of the RI engine were examined according to the sub-chamber's specifications such as the sub-chamber volume and the diameter and number of passage holes. These experimental results showed that the RI engine operated successfully and was affected by the ratio of the passage hole area to the sub-chamber volume.

Emission Reduction Characteristics of Three-way Catalyst with Engine Operating Condition Change in an Ultra-lean Gasoline Direct Injection Engine (초희박 직접분사식 가솔린 엔진용 삼원촉매의 운전조건에 따른 배기저감 특성)

  • Park, Cheol Woong;Lee, Sun Youp;Yi, Ui Hyung;Lee, Jang Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.9
    • /
    • pp.727-734
    • /
    • 2015
  • Recently, because of the increased oil prices globally, there have been studies investigating the improvement of fuel-conversion efficiency in internal combustion engines. The improvements realized in thermal efficiency using lean combustion are essential because they enable us to realize higher thermal efficiency in gasoline engines because lean combustion leads to an increase in the heat-capacity ratio and a reduction of the combustion temperature. Gasoline direct injection (GDI) engines enable lean combustion by injecting fuel directly into the cylinder and controlling the combustion parameters precisely. However, the extension of the flammability limit and the stabilization of lean combustion are required for the commercialization of GDI engines. The reduction characteristics of three-way catalysts (TWC) for lean combustion engines are somewhat limited owing to the high excess air ratio and low exhaust gas temperature. Therefore, in the present study, we assess the reaction of exhaust gases and their production in terms of the development of efficient TWCs for lean-burn GDI engines at 2000 rpm / BMEP 2 bar operating conditions, which are frequently used when evaluating the fuel consumption in passenger vehicles. At the lean-combustion operating point, $NO_2$ was produced during combustion and the ratio of $NO_2$ increased, while that of $N_2O$ decreased as the excess air ratio increased.