• 제목/요약/키워드: Ultra Pure Water

검색결과 50건 처리시간 0.02초

Roles of RO Membranes in Ultra Pure Water Production

  • Maeda, Yasushi Maeda;Miyamoto, Hideki
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2000년도 산업용 초순수 제조 기술 및 응용 Production technology and Applications of Industrial Ultra-pure Water
    • /
    • pp.17-27
    • /
    • 2000
  • PDF

반도체 습식 세정 공정 중 상온의 초순수와 염기성 수용액 내에서 오존의 용해도 최적화 (The Optimization of Ozone Solubility and Half Life Time in Ultra Pure Water and Alkaline Solution on Semiconductor Wet Cleaning Process)

  • 이상호;이승호;김규채;권태영;박진구;배소익;이건호;김인정
    • 반도체디스플레이기술학회지
    • /
    • 제4권4호
    • /
    • pp.19-26
    • /
    • 2005
  • The process optimization of ozone concentration and half life time was investigated in ultra pure water and alkaline solutions for the wet cleaning of silicon wafer surface at room temperature. In the ultra pure water,. the maximum concentration (35 ppm) of ozone was measured at oxygen flow rate of 3 liters/min and ozone generator power over 60%. The half life time of ozone increased at lower power of ozone generator. Additive gases such as $N_2$ and $CO_2$ were added to increase the concentration and half life time of ozone. Although the maximum ozone concentration was higher with the addition of $N_2$ gas, a longer half life time was observed with the addition of $CO_2$. When $NH_4OH$ of 0.05 or 0.10 vol% was added in DI water, the pH of the solution was around 10. The addition of ozone resulted in the half life time less than 1 min. In order to maintain high pH and ozone concentration, ozone was continuously supplied in 0.05 vol% ammonia solutions. 3 ppm of ozone was dissolved in ammonia solutions. The static contact angle of silicon wafer surface became hydrophilic. The particle removal was possible alkaline ozone solutions. The organic contamination can be removed by ozonated ultra pure water and then alkaline solution containing ozone can remove the particles on silicon surface at room temperature.

  • PDF

해수와 제지슬러지소각재의 광물탄산화 반응을 이용한 이산화탄소 저장 연구 (Study on Carbon Dioxide Storage through Mineral Carbonation using Sea Water and Paper Sludge Ash)

  • 김다미;김명진
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제19권1호
    • /
    • pp.18-24
    • /
    • 2016
  • 광물탄산화는 이산화탄소를 칼슘, 마그네슘 등을 함유한 금속산화물과 반응시켜 영구적으로 저장하는 기술이다. 본 연구에서는 직접탄산화 방법으로 이산화탄소를 저장하기 위해 해수와 알칼리성 산업부산물인 제지슬러지소각재(PSA)를 사용하였다. 다양한 실험을 통해 해수와 PSA를 이용한 직접탄산화 반응의 최적 용매의 양(해수와 PSA의 혼합비)과 반응시간을 찾았고, PSA를 이용한 직접탄산화 반응에 해수와 초순수를 각각 용매로 사용했을 때의 이산화탄소 저장량을 비교하였다. 이산화탄소 저장량은 탄산화반응 후 고체증가량과 열중량분석 결과를 이용해서 계산하였다. 실험에 사용한 PSA는 미세하고 67.2%의 칼슘을 포함하였다. $25^{\circ}C$, 1기압에서 해수를 PSA와 혼합하여 이산화탄소를 0.05 L/min 유량으로 주입하는 탄산화반응의 최적 용매의 양과 반응시간은 각각 5 mL/g, 2시간이었다. 해수와 초순수를 용매로 사용해서 PSA와 각각 혼합한 다음 탄산화했을 때, 이산화탄소 저장량은 각각 113, $101kg\;CO^2/(ton\;PSA)$이었다. 해수를 사용하여 탄산화한 고체는 대부분 calcite 형태의 탄산칼슘과 소량의 탄산마그네슘으로 구성되어있었고, 초순수를 사용했을 때의 고체도 calcite 형태의 탄산염임을 확인하였다.

Development and Applications of Membrane Technology in Korea

  • Noh, S.H.
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1995년도 추계 총회 및 학술발표회
    • /
    • pp.74-79
    • /
    • 1995
  • In the last 10 years, membrane science and technology in Korea have grown fast in terms of basic research and process applications. Even the first large commercial membrane plant in Korea was an ion-exchange membrane process built in 1975 for the production of table salt with an annual capacity of 150,000 tons of salt, membrane processes could not draw general interests from industry not until 1987 when a reverse osmosis plant for the production of process water with a capacity of 10,000 m$^3$/day was built by Kugdong Petroleum Co. Today, the production of water by RO over the capacity of 140,000 m$^3$/day is in operation or under construction in Korea. Consumption of ultra pure water increases sharply in recent years mainly due to the rapid expansion of semiconductor industry and the introduction of ultra high pressure boilers for power plants.

  • PDF

태양열 집열기 적용을 위한 순수 물과 에탄올 탄소나노유체의 특성 비교 연구 (A Comparative Study on the Characteristics of the Pure water and Ethanol Carbon Nanofluids for Applying Solar Collector)

  • 안응진;박성식;천원기;박윤철;김남진
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.194-199
    • /
    • 2012
  • In this study, for increasing the efficiency of solar collector, the thermal conductivities and viscosities of the pure water and ethanol oxidized multi-walled carbon nanofluids were measured. Nanofluids were manufactured by ultra-sonic dispersing oxidized multi-walled carbon nanotubes(OMWCNTs) in the pure-water and ethanol at the rates of 0.0005 ~ 0.1 vol%. the Thermal conductivities and viscosities of manufactured nanofluids were measured at the low temperature($10^{\circ}C$), the room temperature($25^{\circ}C$) and the high temperature($70^{\circ}C$). For measuring thermal conductivity and viscosity, we used Transient Hot-wire Method and Rotational Digital Viscometer, respectively. As a result, under given temperature conditions, thermal conductivity of the 0.1 vol% pure-water nanofluid improved 7.98% ($10^{\circ}C$), 8.34% ($25^{\circ}C$), and 9.14% ($70^{\circ}C$), and its viscosity increased by 37.08% ($10^{\circ}C$), 33.96% ($25^{\circ}C$) and 21.64% ($70^{\circ}C$) than the base fluids. Thermal conductivity of the 0.1 vol% ethanol nanofluids improved 33.72% ($10^{\circ}C$), 33.14% ($25^{\circ}C$), and 32.36% ($70^{\circ}C$), and its viscosity increased by 37.93% ($10^{\circ}C$), 31.92% ($25^{\circ}C$) and 29.42% ($70^{\circ}C$) than the base fluids.

  • PDF

전리수를 이용한 반도체 세정 공정 (Electrolyzed Water Cleaning for Semiconductor Manufacturing)

  • 류근걸;김우혁;이윤배;이종권
    • 반도체디스플레이기술학회지
    • /
    • 제2권3호
    • /
    • pp.1-6
    • /
    • 2003
  • In the rapid changes of the semiconductor manufacturing technologies for early 21st century, it may be safely said that a kernel of terms is the size increase of Si wafer and the size decrease of semiconductor devices. As the size of Si wafers increases and semiconductor device is miniaturized, the units of cleaning processes increase. A present cleaning technology is based upon RCA cleaning which consumes vast chemicals and ultra pure water (UPW) and is the high temperature process. Therefore, this technology gives rise to environmental issue. To resolve this matter, candidates of advanced cleaning processes have been studied. One of them is to apply the electrolyzed water. In this work, electrolyzed water cleaning was compared with various chemical cleaning, using Si wafer surfaces by changing cleaning temperature and cleaning time, and especially, concentrating upon the contact angle. It was observed that contact angle on surface treated with Electrolyzed water cleaning was $4.4^{\circ}$ without RCA cleaning. Amine series additive of high pKa (negative logarithm of the acidity constant) was used to observe the property changes of cathode water.

  • PDF

Recent advances in water and wastewater treatment using membranes with carbon nanotubes

  • Michal, Bodzek;Krystyna, Konieczny;Anna, Kwiecinska-Mydlak
    • Membrane and Water Treatment
    • /
    • 제13권6호
    • /
    • pp.259-290
    • /
    • 2022
  • Carbon nanotubes (CNTs), due to their excellent physical, chemical and mechanical properties and their ability to prepare new membranes with attractive properties, have found applications in water and wastewater technology. CNT functionalization, which involves the introduction of different types of functional groups into pure CNTs, improves the capabilities of CNT membranes for water and wastewater treatment. It turns out that CNT-based membranes have many advantages, including enhanced water permeability, high selectivity and anti-fouling properties. However, their full-scale application is still limited by their high cost. With their tremendous separation efficiency, low biofouling potential and ultra-high water flux, CNT membranes have the potential to be a leading technology in water treatment in the future, especially in desalination.

p-HP 고분자 LB초박막의 제작과 전기적 특성 (Electrical Properties and Fabrication of Ultra-thin Films using p-HP Polymer)

  • 유승엽;정상범;박재철;권영수
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제51권7호
    • /
    • pp.287-291
    • /
    • 2002
  • We fabricated the crosslinked films using p-hexadecoxyphenol (p-HP), which is amphiphilic and can form polyion complexes with formaldehyde at the air-water interface. The behavior of polyion complexation at the air-water interface and the surface structure of LB films was investigated by Brewster angle microscope(BAM) and scanning Maxwell-stress microscope (SMM), respectively. Also, the electrical properties for crosslinking in phenol-formaldehyde LB films were investigated by measuring conductivity and dielectric constant. The conductivities of p-HP LB films are as follows: heat-treatment of 1% formaldehyde subphase(3.76$\times$10$^{-15}$ ~4.76$\times$10$^{-1}$5[S/cm])$\times$10$^{-14}$ ~1.74$\times$10$^{-14}$ [S/cm]). Also, relative dielectric constants of p-HP LB films were reduced from 6.76~7.84 (pure water) to 2.97~3.25 (heat-treatment of 1% formaldehyde subphase))

Lateral Penetration of Water in Ray Parenchyma Cells of Castanea crenata

  • Ahmed, Sheikh Ali;Chong, Song-Ho;Chun, Su-Kyoung
    • 한국가구학회지
    • /
    • 제19권2호
    • /
    • pp.137-140
    • /
    • 2008
  • This experiment states the ultra pure distilled water penetration depth through ray parenchyma cell in radial direction of Castanea crenata. Heartwood penetration depth was 1.16 times lower than the depth in softwood and that difference was found statistically significant at 75.2 second of penetration. Following go-stop-go cycle, water penetrated in the ray parenchyma cell. At the beginning this speed was high and then it was decreased slowly. Water penetration depth result was compared with alcohol penetration depth. It was found that water penetration in ray parenchyma was found lower than alcohol due to the low surface tension of water.

  • PDF

Longitudinal Penetration of Water through the Vessel and Wood Fiber in Castanea crenata

  • Ahmed, Sheikh Ali;Chun, Su-Kyoung
    • 한국가구학회지
    • /
    • 제19권2호
    • /
    • pp.111-115
    • /
    • 2008
  • An experiment was conducted to know ultra-pure distilled water penetration depth through large vessel, small vessel, latewood fiber and earlywood fiber in longitudinal direction of Castanea crenata. In heartwood, latewood fiber transported water more than large and small vessel. While in sapwood, small vessel conduction depth was found the highest. Penetration depth of water after 15.0 seconds, no significant difference was observed among earlywood fiber, latewood fiber and earlywood vessel. Whilst in heartwood, no statistical difference was observed among earlywood fiber, latewood fiber and earlywood vessel. At the beginning, the speed of water penetration was high and then gradually decreased.

  • PDF