• 제목/요약/키워드: Ultra Precision Engineering

검색결과 643건 처리시간 0.027초

비구면 유리렌즈 열변형 보정에 관한 연구 (A Study on Thermal Deformation Compensation in the Molding of Aspheric Glass Lenses)

  • 이동길;김현욱;차두환;이학석;김혜정;김정호
    • 한국정밀공학회지
    • /
    • 제27권5호
    • /
    • pp.22-26
    • /
    • 2010
  • Recently, due to the tremendous growth of media technology, demands of the aspheric glass lens which is a high-performance and miniaturized increase gradually. Generally, the aspheric glass lens is manufactured by Glass Molding Press (GMP) method using tungsten carbide (WC) mold core. In this study, the thermal deformation which was occurred by GMP process was analyzed and applied it to compensate the aspheric glass lens. The compensated lens was satisfied that can be applied to the actual specifications.

자유곡면가공기용 초정밀 회전테이블의 설계 및 평가 (Design and Evaluation of an Ultra Precision Rotary Table for Freeform Machine Tools)

  • 황주호;박천홍
    • 한국정밀공학회지
    • /
    • 제27권7호
    • /
    • pp.94-100
    • /
    • 2010
  • This paper describes the design and evaluation procedure of an ultra-precision rotary table for freeform generating machined tools. Design of the thrust and journal hydrostatic bearings and experimental evaluation of the table were performed. To get the compact size and less lost motion direct drive servomotor with ultra precision encoder. From the considered design, following performance were confirmed by experiment. The total stiffness of the prototype rotary table was 483.6 $N/{\mu}m$ and 97.6 $N/{\mu}m$ for axial and radial direction, respectively. Rotational accuracy of the table was investigated by capacitive sensor and reversal measurement technique, and 0.10 ${\mu}m$ radial direction and 0.05 ${\mu}m$ axial direction of the rotational accuracy were confirmed. The micro resolution of the table was also investigated with displacement of capacitive sensor, and $0.5/10000^{\circ}$ of micro resolution was confirmed. Index accuracy of the table was evaluated by the autocollimator and polygon mirror, and the $\pm0.39$ arcsec accuracy and $\pm0.16$ arcsec repeatability of the table were confirmed. Those are under the general requirements of ultra precision rotary tables for freeform generating machined tools.

초정밀 비구면 가공용 CAM 소프트웨어 개발에 대한 연구 (The Development of CAM Software for Ultra-precision Aspheric Surface)

  • 양민양;이택민
    • 한국정밀공학회지
    • /
    • 제19권4호
    • /
    • pp.79-86
    • /
    • 2002
  • As consumer electronics, information, and aero-space industry grow, the demand for aspheric lens increases higher. To enhance the precision and productivity of aspheric surface, a CAM system for ultra-precision aspheric surface needs to be realized. In this study, the developed CAM system can generate NC code fur various aspheric surfaces fast and precisely by a new bi-arc interpolation method that the location of maximum error is fixed at an efficient point. The newly developed bi-arc meets the given tolerance more precisely, performs faster calculation. The cutting condition input module and the NC code verification module are adequate to ultra-precision machining, so that a operator can obtain products fast and easily.

초정밀 다이아몬드 터닝에 의한 무전해 니켈의 피삭성 연구 (A Study on the Machinability of Electroless Nickel by the Ultra-Precision Diamond Turning)

  • 김우순;김동현;난바의치
    • 한국정밀공학회지
    • /
    • 제21권8호
    • /
    • pp.27-33
    • /
    • 2004
  • The ultra-precision cutting is a key technique for the manufacture of optical components such as aluminium mirrors, electroless nickel mirror, plastic mirror in a variety of advanced science and technology applications. The paper presents experimental results of ultra-precision diamond fuming of electroless nickel materials. In general, the cutting condition such as feed rate and depth of rut, have effect on the surface roughness in ultra-precision diamond turning. To obtain an optimal cutting condition, we studied the effect of the cutting speed. the tool length, the tool nose radius, the feed rate and depth of cut on the surface roughness. So, the relationship of the surface roughness and cutting condition has been clarified. From the experimental results, the machined surface roughnesses were obtained less than 1nm rms.

유한요소법을 이용한 초정밀 미동스테이지 설계에 관한 연구(I) (A Study on the Design of Ultra Precision Positioning Apparatus using FEM (I))

  • 김재열;윤성운;김항우;한재호;곽이구
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.190-194
    • /
    • 2001
  • Because, Piezo-electric transducer(PZT) transform electric energy into mechanical energy, it is a adequate material for positioning control and force control, take excellent properties as actuator with high speed and high performance. Recently, researches of ultra precision positioning using this PZT are advanced in. In this paper, we use a actuator of PZT, design a positioning apparatus with ultra precision position apparatus as hinge structure. Because of this purpose, before, we were confirmed in control properties of ultra precision stage by FEM method.

  • PDF

히스테리시스 보상을 이용한 압전구동기의 초정밀 위치제어 (Ultra-Precision Position Control of Piezoelectric Actuator System Using Hysteresis Compensation)

  • 홍성룡;이병룡
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.85-88
    • /
    • 2000
  • In this paper, the ultra precision positioning system for piezoelectric actuator using hysteresis compensation has been developed. Piezoelectric actuators exhibit limited accuracy in tracking control due to their hysteresis nonlinearity. The main purpose of the proposed controller is to compensate the hysteresis nonlinearity of the piezoelectric actuator. The controller is composed of a PD, hysteresis compensation and neural network part in parallel manner, at first, the excellent tracking performance of the neural network controller was verified by experiments and was compared with the classical PD controller.

  • PDF