• 제목/요약/키워드: Ultra High Strength Steels

검색결과 35건 처리시간 0.022초

Characterization of Tribolayers and Sliding wear at High Temperature between AlCrN Coated Tool Steels and Ultra-high Strength Boron Steels

  • Choi, Byung-Young;Gu, Yoon-Sik
    • 열처리공학회지
    • /
    • 제24권1호
    • /
    • pp.37-44
    • /
    • 2011
  • High temperature wear of AlCrN coated tool steels sliding against the ultra-high strength boron steels used for hot press forming has been studied. The sliding wear tests have been carried out using a pin-on-disc of configuration under applied normal load of 50 N for 20 min with heating the ultra-high strength boron steels up to $800^{\circ}C$. Characterizations of tribolayers formed on the contacting surfaces between the tribopairs of the AlCrN coated tool steels and the ultra-high strength boron steels have been studied. It was found on the tribolayers of the AlCrN coated tool steels that microcracking and oxides containing Fe and Cr to increase friction coefficient were formed at the early stage of sliding wear, followed by the generation of the smeared oxide layers containing Fe transferred from the tribopair to decrease friction coefficient. This may mainly contribute to very low specific wear rate of the AlCrN coated tool steels sliding against the ultra-high strength boron steels, resulting from oxideoxide contact between the tribopair.

건설용 강재개발 및 용접기술동향 (Development of Structural Steel and Trend of Welding Technology)

  • 김성진;정홍철
    • Journal of Welding and Joining
    • /
    • 제34권1호
    • /
    • pp.7-20
    • /
    • 2016
  • A brief overview is given of the development of various structural steels and their welding application technology. Firstly, the general characteristics and welding performance of structural steels used in architecture and bridge are introduced. For safety against earthquakes or strong wind, and for highly efficient welding in high-rise building constructions, ultra high strength steel with tensile strength over 800 MPa or high HAZ toughness steel plates under high heat input welding have been developed. In particular, efficient welding technology ensuring high resistance to cold and hot cracking of ultra high strength steel is reviewed in the present paper. Secondly, various coated steels used mainly for outer part in construction are briefly discussed. Moreover, a major drawback of coated steel during welding operation, and several solutions to overcome such technical problem are proposed. It is hoped that this review paper can lead to significant academic contributions and provide readers interested in the structural steels with useful welding technology.

인장강도 1200 MPa 급 자동차 서브 프레임의 합금성분 최적화 및 열변형 거동 연구 (A Study on Dimensional Change after Heat Treatment and Optimal Chemical Composition of Steels with 1200 MPa Tensile Strength for Automotive Subframe)

  • 정우창
    • 열처리공학회지
    • /
    • 제33권3호
    • /
    • pp.107-116
    • /
    • 2020
  • Four air hardening steels with carbon, silicon, manganese, chromium, and molybdenum variations have been used in this study to find out the optimal chemical compositions of steels with over 1200 MPa tensile strength for automotive subframe. The dimensional changes after heat treatment were determined for two automotive parts with open and closed cross sections using 3D scanner. When four steels were austenitized at 900℃ for 30 seconds, cooled at 3℃/s, reheated to 450℃ for 10 seconds followed by air cooling to simulate hot-dip galvanizing treatment showed ultra high tensile strength over 1200 MPa. Rear floor cross member with open cross section revealed much bigger dimensional changes than subframe with closed cross section after heat treatment at 900℃ for 20 minutes followed by air cooling.

자동차용 핫스탬핑 고강도강 판재의 겹치기 레이저용접 (Lap joint Laser Welding of Hot Stamped Ultra High Strength Steel for Automotive Application)

  • 김용;박기영;이경돈
    • 한국레이저가공학회지
    • /
    • 제15권1호
    • /
    • pp.1-5
    • /
    • 2012
  • Recently ultra high strength steels(UHSS) has been widely applied to the structural or safety components in the automotive industry. Specially, hot stamping boron steel 22MnB5 has shown the crash-resistant characteristics when applying to bumpers and pillars. Lap joint Laser welding of the hot stamped and die quenched sheets of Boron steel was carried out using 3kW Nd/YAG laser. The appropriate Lap joint laser welding conditions were founded separately for four lap joint combinations. The lower sheest is a hot stamped sheet in common and the upper sheet is selected among the hot stamped steel and high strength steels such as SPCC, 370MPa, and 590MPa grade high strength steels. Cross bead sections and local hardening and softening were observed as well as tensile-shear test results.

  • PDF

차체용 1.2GPa급 초고장력 TRIP강판의 저항 점 용접부 너겟 지름 예측에 관한 연구 (A Study on the Prediction of Nugget Diameter of Resistance Spot Welded Part of 1.2GPa Ultra High Strength TRIP Steel for Vehicle)

  • 신석우;이종훈;박상흡
    • 한국산학기술학회논문지
    • /
    • 제19권3호
    • /
    • pp.52-60
    • /
    • 2018
  • 최근 자동차 산업에서는 연비향상 및 안전규제 강화에 따라 차량 경량화가 필수적으로 요구됨에 따라 DP강(Dual Phase steel), CP강(Complex Phase steel), MS강(Martensitic Steel), TRIP강(Transformation Induced Plasticity steel), TWIP강(Twinning Induced Plasticity steel) 등과 같은 인장강도 700MPa 이상인 초고장력강(Ultra High Strength Steel)의 적용이 증가하고 있다. 초고장력강을 차체에 적용하기 위해서는 용접공정이 필수적이며, 원가 측면에서 유리한 전기저항점용접(Resistance Spot Welding, RSW)이 차체 용접에서 80%이상으로 가장 많이 적용되고 있다. 초고장력강은 강도향상을 위해 합금원소 함량을 늘이기 때문에 일반적으로 용접성이 열악한 것으로 알려져 있다. 이러한 초고장력강의 저항점용접의 경우 적정 용접조건 영역이 축소되고 용접부에서 계면파단 및 부분계면파단이 발생하는 것으로 보고되어 있어 결함 및 품질을 실시간으로 예측할 수 있는 용접품질 판정 연구가 활발히 진행되고 있다. 이에 따라 본 연구에서는 저항 점 용접을 수행할 때 검출되는 2차 회로 공정 변수를 이용하여 용접부의 동저항을 모니터링하고, 이 동저항 패턴에서 용접 품질 판단에 필요한 인자들을 추출하였다. 추출한 인자들을 상관분석하여 용접 품질과의 상관성을 파악하였으며, 상관성이 높은 인자들을 이용하여 회귀분석을 실시하였다. 이를 근거로 현장 적용이 가능한 회귀 모델을 제시하였다.

오스템퍼링 시간에 따른 초고강도 나노 베이나이트강의 미세조직과 기계적 특성 (Effect of Austempering Time on the Microstructure and Mechanical Properties of Ultra-High Strength Nanostructured Bainitic Steels)

  • 이지민;황병철
    • 한국재료학회지
    • /
    • 제30권2호
    • /
    • pp.87-92
    • /
    • 2020
  • This study deals with the effects of austempering time on the microstructure and mechanical properties of ultra-high strength nanostructured bainitic steels with high carbon and silicon contents. The steels are composed of bainite, martensite and retained austenite by austempering and quenching. As the duration of austempering increases, the thickness of bainitic ferrite increases, but the thickness of retained austenite decreases. Some retained austenites with lower stability are more easily transformed to martensite during tensile testing, which has a detrimental effect on the elongation due to the brittleness of transformed martensite. With increasing austempering time, the hardness decreased and then remained stable because the transformation to nanostructured bainite compensates for the decrease in the volume fraction of martensite. Charpy impact test results indicated that increasing austempering time improved the impact toughness because the formation of brittle martensite was prevented by the decreased fraction and increased stability of retained austenite.

고항복비 강재를 이용한 내진구조시스템의 내진성능 (Earthquake Resistance Performance of Frames with High-Yield Ratio Steels)

  • 오상훈
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2005년도 학술발표회 논문집
    • /
    • pp.211-219
    • /
    • 2005
  • Nowadays, various grades of high-strength steels are available. The application of ultra-high grades of steels for building structures, however, is limited only to the elements stressed under tension. The highest grade of steels generally used has a tensile strength of around 600N/mm2. Most research is focused on lower yield ratios of high strength steel in the inelastic range to ensure the stability of structures. In this paper, however, the possibility of an effective application of high strength steel with high yield ratio to building structures is discussed. An efficient structural system and a design method based on earthquake response analysis and experimental results are proposed.

  • PDF

신선 가공된 열처리 생략강의 냉간 성형성에 대한 연구 (Study on the Cold Formability of Drawn Non-heat Treated Steels)

  • 박경수;박용규;이덕락;이종수
    • 소성∙가공
    • /
    • 제12권4호
    • /
    • pp.364-369
    • /
    • 2003
  • Non-heat treated steels are attractive in the steel-wire industry since the spheroidization and quenching-tempering treatment are not involved during the processing. However, non-heat treated steels should satisfy high strength and good formability without performing heat treatment. Therefore, it is important to investigate optimum materials showing a good combination of strength and formability after the drawing process. In this study, three different steels such as dual phase steel, low-Si steel, and ultra low carbon bainitic steel were used to study their mechanical properties and the cold formability. The cold formability of three steels was investigated by estimating the deformation resistance and the forming limit. The deformation resistance was estimated by calculating the deformation energy, and the forming limit was evaluated by measuring the critical strain revealing crack initiation at the notch tip of the specimens. The results showed that deformation resistance was the lowest in the low-Si steel, and the forming limit strains of ultra low carbon bainitic steel and low-Si steel were higher than that of commercial SWRCH45F steel.

압축강도 1800kg/$\textrm{cm}^2$의 초고강도콘크리트 개발에 관한 실험적 연구 (제1보 실험계획 및 예비실험) (An Experimental Study on the Manufacture Ultra-High Strength Concrete of 1800kg/$\textrm{cm}^2$ Compressive Strength (Part I The Experimental Program and Preliminary Experiment))

  • 김규용;김진만;이상수;남상일;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.167-170
    • /
    • 1994
  • To reduce the size of structural members, high strength concrete has recently been utilized for structure such as ultra-high-rise buildings and prestressed concrete bridges in North America, and its compressive strength has gone up to 1300kg/$\textrm{cm}^2$. In Japan, research on high-strength concrete has been undertaken on a large scale by the national enterprise so-called New RC Project. And high-strength concrete with a design compressive strength over 450kg/$\textrm{cm}^2$ has recently been employed for high rised reinforced concrete building. As a result of the serious land availability situation of metropolitan areas in the world, buildings will become taller, and even higher strengths will be required. In the future, the utilization of high-strength concrete will spread widely through the development of new structural concepts, application of steels of a higher yield stress, silica fume, and other new materials. Considering these circumstance, the aim of this experimental study is to develop ultra-high-strength concrete with compressive strength over 1800kg/$\textrm{cm}^2$ with domestic current materials. There are so many factors which influence the manufacturing of ultra-high-strength concrete. The experimental factors selected in this study are mixing methods, curing methods, water-binder ratio, maximum size of coarse by silica fume. The results of this experimental study show that it is possible to develop the ultra-high-strength concrete with compressive strength over 1700kg/$\textrm{cm}^2$ at 28days, 1800kg/$\textrm{cm}^2$ at 56 days.

  • PDF

압축강도 1800kg/$\textrm{cm}^2$의 초고강도콘크리트 개발에 관한 실험적 연구 (제2보 초고강도콘크리트의 제조에 관한 실험) (An Experimental Study on the Manufacture Ultra-High Strength Concrete of 1800kg/$\textrm{cm}^2$ Compressive Strength (Part 2 The Experiment on the Manufacture of the U.H.S Concrete))

  • 남상일;김진만;최민수;김규용;최희용;김무한
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.171-174
    • /
    • 1994
  • To reduce the size of structural members, high strength concrete has recently been utilized for structure such as ultra-high-rise buildings and prestressed concrete bridges in North America, and its compressive strength has gone up to 1300kg/$\textrm{cm}^2$. In Japan, research on high-strength concrete has been undertaken on a large scale by the national enterprise so-called New RC Project. And high-strength concrete with a design compressive strength over 450kg/$\textrm{cm}^2$ has recently been employed for high rised reinforced concrete building. As a result of the serious land availability situation of metropolitan areas in the world, buildings will become taller, and even higher strengths will be required. In the future, the utilization of high-strength concrete will spread widely through the development of new structural concepts, application of steels of a higher yield stress, silica fume, and other new materials. Considering these circumstance, the aim of this experimental study is to develop ultra-high-strength concrete with compressive strength over 1800kg/$\textrm{cm}^2$ with domestic current materials. There are so many factors which influence the manufacturing of ultra-high-strength concrete. The experimental factors selected in this study are mixing methods, curing methods, water-binder ratio, maximum size of coarse by silica fume. The results of this experimental study show that it is possible to develop the ultra-high-strength concrete with compressive strength over 1700kg/$\textrm{cm}^2$ at 28days, 1800kg/$\textrm{cm}^2$ at 56 days.

  • PDF