• Title/Summary/Keyword: Ultimate stress

검색결과 766건 처리시간 0.025초

개구부가 있는 철근콘크리트 전단벽의 극한해석 (Ultimate Analysis of Reinforced Concrete Shear Walls with Opening)

  • 허남륜;유영화;김운학
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제5권1호
    • /
    • pp.195-205
    • /
    • 2001
  • An analytical finite element approach to nonlinear behavior of reinforced concrete shear walls with opening under monotonic loading was presented in this paper. In order to achieve the objectives of present paper, the orthogonal anisotropic models for cracked reinforced concrete element based on smeared crack concept were used as the nonlinear material models of biaxial state of stress. The stiffness of cracked concrete was evaluated through the combined use of tension and compression stiffness models in and parallel directions of crack, respectively and shear transfer effect due to the aggregate interlocking at crack surface. The stress and strain of reinforcement in concrete was evaluated using the average stress and average strain relation with bond effect. based on smeared crack concept. The diagonal reinforcing bar was modeled using truss element with bond effect. A special significance of diagonal reinforcement near opening was given to the shear wall with opening and an effective distribution of diagonal reinforcement was presented in order to give an ultimate strength increment as well as a crack control.

  • PDF

기하학적 재료적 비선형 특성을 고려한 스트라치 단위부재의 명시적 긴장설치 및 극한하중 해석 (Explicit Stress-Erection and Ultimate Load Analysis of Unit STRARCH Frame Considering Geometrically and Materially Nonlinear Characteristics)

  • 이경수;한상을
    • 한국강구조학회 논문집
    • /
    • 제23권4호
    • /
    • pp.429-438
    • /
    • 2011
  • 본 연구에서는 스트라치 시스템의 긴장설치과정 및 극한하중 해석을 수행하기 위한 명시적 해석법을 제안하였다. 스트라치 시스템은 Stressed-Arch에서 유래한 용어로 슬리브와 갭이 도입된 유동하현재 내부의 긴장재에 초기장력을 도입함으로써 갭이 점차 닫히게 되며, 이에 따라 상현재에 곡률이 도입되면서 전체 구조물이 상승하여, 최종적인 아치형태의 구조물을 형성하는 독창적인 구조시스템이다. 스트라치 시스템의 초기장력 도입과정을 긴장설치(stress-erection) 과정이라 하며, 초기곡률의 도입에 따라 유동 상현재에는 과도한 초기변형이 발생하여 소성거동에 의한 강체회전이 발생하는 불안정 구조물이 된다. 본 연구에서는 이러한 스트라치 시스템의 불안정 거동특성을 해석하기 위해서 강성행렬을 사용하지 않는 명시적 동적이완법을 사용하여 비선형 평형방정식의 해를 구하였고, 대변위 및 단면의 재료적 특성을 반영할 수 있는 필라맨트 보요소를 사용하여 연속된 상현재의 비선형 거동특성을 분석하였다. 필라맨트 보요소의 단면은 다수의 1차원 필라맨트로 구성되며, 각각의 필라맨트에 대해서 다양한 재료모델을 적용할 수 있다. 본 연구에서는 비선형 재료모델인 Ramberg-Osgood모델 및 Bi-linear 탄소성 모델을 적용하여 긴장설치 및 극한하중 해석을 수행하였고, 그 결과를 이전의 실험적 연구결과와 비교 분석하였다. 본 연구의 해석결과는 이전의 실험적 연구결과와 유사하였으며, 명시적 해석법의 특성상 효율적으로 후좌굴거동 특성까지 해석할 수 있었다.

Effects of initial imperfections on nonlinear behaviors of thin-walled members

  • Ohga, M.;Takaue, A.;Shigematsu, T.;Hara, T.
    • Structural Engineering and Mechanics
    • /
    • 제11권5호
    • /
    • pp.519-534
    • /
    • 2001
  • The effect of the initial imperfections on the nonlinear behaviors and ultimate strength of the thin-walled members subjected to the axial loads, obtained by the finite element stability analysis, are examined. As the initial imperfections, the bucking mode shapes of the members are adopted. The buckling mode shapes of the thin-walled members are obtained by the transfer matrix method. In the finite element stability analysis, isoparametric degenerated shell element is used, and the geometrical and material nonlinearity are considered based on the Green Lagrange strain definition and the Prandtl-Reuss stress-strain relation following the von Mises yield criterion. The U-, box- and I-section members subjected to the axial loads are adopted for numerical examples, and the effects of the initial imperfections on the nonlinear behaviors and ultimate strength of the members are examined.

Stiffener configurations of beam to concrete-filled tube column connections

  • Dessouki, Abdelrahim K.;Yousef, Ahmed H.;Fawzy, Mona M.
    • Steel and Composite Structures
    • /
    • 제17권1호
    • /
    • pp.83-103
    • /
    • 2014
  • The objective of this research is to study the ultimate moment capacity of the connections between steel I-beams and concrete-filled steel tube columns using different stiffener configurations. The main parameters considered are column cross section shape, square or circular, and filling the column with concrete. This analytical study includes finite element models using ANSYS program taking geometric and material nonlinearities into consideration. These models are verified against the experimental results obtained from previous researches and current design guides. The results show that using proper stiffener configuration affects the stress distribution through the connection and increases the ultimate moment capacity of the connections. Also, circular column is advantageous than the square column for all stiffener configurations and dimensions.

콘크리트의 인장강성을 고려한 RC보의 비틀림 해석 (Torsional Analysis of RC Beam Considering Tensile Stiffening of Concrete)

  • 박창규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.167-172
    • /
    • 2002
  • Nonlinear analysis of the reinforced concrete beam subjected to torsion is presented. Seventeen equations involving seventeen variables are derived from the equilibrium equation, compatibility equation, and the material constitutive laws to solve the torsion problem. Newton method was used to solve the nonlinear simultaneous equations and efficient algorithms are proposed. Present model covers the behavior of reinforced concrete beam under pure torsion from service load range to ultimate stage. Tensile resistance of concrete after cracking is appropriately considered. The softened concrete truss model and the average stress-strain relations of concrete and steel are used. To verify the validity of Present model, the nominal torsional moment strengths according to ACI-99 code and the ultimate torsional moment by present model are compared to experimental torsional strengths of 55 test specimens found in literature. The ultimate torsional moment strengths by the present model show good results.

  • PDF

강판으로 보강된 RC보의 조기파괴제어에 관한 실헙적 연구 (A Experimental Study on the Control of Premature Failure of RC Beams strengthened by Steel Plates)

  • 심종성;한만엽;김규선;이인범
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회논문집(II)
    • /
    • pp.585-591
    • /
    • 1998
  • In the case of reinforced concrete beams strengthening by steel plate, sometimes these beams collapse due to the stress concentration at the ends of steel plates before the design expected failure. This kind of failure is called premature failure. This study analyzes the behavior of strengthened RC beams to control premature failure of these plated beams with either changing the geometries at the ends of plates or strengthening steel plates beside the ends. The results from the former cases show that, the effect of expanded plates sections at the ends was very small, and the beams which are rounded the ends of plates effectively increased the initial rip-off loads about 14% compared with control beam but the ultimate loads was almost same. However, the beams in the latter cases effectively increased the initial and the ultimate rip-off loads with changing failure mode, especially around 14~19% in the ultimate rip-off load comparing with control beam.

  • PDF

Deformation-based Strut-and-Tie Model for reinforced concrete columns subject to lateral loading

  • Hong, Sung-Gul;Lee, Soo-Gon;Hong, Seongwon;Kang, Thomas H.K.
    • Computers and Concrete
    • /
    • 제17권2호
    • /
    • pp.157-172
    • /
    • 2016
  • This paper presents a Strut-and-Tie Model for reinforced concrete (RC) columns subject to lateral loading. The proposed model is based on the loading path for the post-yield state, and the geometries of struts and tie are determined by the stress field of post-yield state. The analysis procedure of the Strut-and-Tie Model is that 1) the shear force and displacement at the initial yield state are calculated and 2) the relationship between the additional shear force and the deformation is determined by modifying the geometry of the longitudinal strut until the ultimate limit state. To validate the developed model, the ultimate strength and associated deformation obtained by experimental results are compared with the values predicted by the model. Good agreements between the proposed model and the experimental data are observed.

Nonlinear behavior of R/C cooling tower shells

  • Hara, Takashi;Kato, Shiro;Ohya, Makoto
    • Structural Engineering and Mechanics
    • /
    • 제5권5호
    • /
    • pp.541-552
    • /
    • 1997
  • In this paper the ultimate strength of the R/C cooling towers, which have initial imperfection and pre-cracked elements, is analyzed. The initial geometric imperfections arise from the unavoidable inaccuracies under the construction and the pre-cracks are assumed to be produced by the temperature stress gradients or cyclic loading under wind pressure and/or earthquake load. Both effects are strongly influenced on the strength of the R/C cooling tower shell structures. The reinforcing ratio is also the important factor to evaluate the ultimate strength of the R/C cooling tower shells. However we could not analyze these structures experimentally because of their large, analyses are the powerful schemes to evaluate the safety and reliability of these structures. The analyzed model is Port Gibson cooling tower shell. In the numerical analysis the geometric and material nonlinearities are taken into account.

소성영역 진전효과를 고려한 공간 뼈대구조의 비탄성 해석 (Inelastic Analysis of Space Steel Frames Considering Spread of Plasticity)

  • 한재영;김성보
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.45-52
    • /
    • 2003
  • A finite element procedure to estimate ultimate strength of space frames considering spread of plasticity is presented. The improved displacement field is introduced based on inclusion of second order terms of finite rotations. All the nonlinear terms due to bending and torsional moment as well as axial force are precisely considered. The concept of plastic hinge is introduced and the incremental load/displacement method is applied for the elasto-plastic analysis. The initial yield surface is defined based on the residual stress and the full plastification surface is considered under the combined action of axial force, bending and torsional moments. The elasto-plastic stiffness matrices are derived using the flow rule and the normality condition of the limit function. Finite element solutions for ultimate strength of space frames are compared with available solutions and experimental results.

  • PDF

평균변형률을 이용한 RC보의 비틀림 해석 (Torsional Analysis of RC Beam Using Average Strains)

  • 박창규
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권2호
    • /
    • pp.157-165
    • /
    • 2002
  • Nonlinear analysis of the reinforced concrete beam subjected to torsion is presented. Seventeen equations involving seventeen variables are derived from the equilibrium equation, compatibility equation, and the material constitutive laws to solve the torsion problem. Newton method was used to solve the nonlinear simultaneous equations and efficient algorithms are proposed. Present model covers the behavior of reinforced concrete beam under pure torsion from service load range to ultimate stage. Tensile resistance of concrete after cracking is appropriately considered. The softened concrete truss model and the average stress-strain relations of concrete and steel are used. To verify the validity of present model, the nominal torsional moment strengths according to ACI-99 code and the ultimate torsional moment by present model are compared to experimental torsional strengths of 55 test specimens found in literature. The ultimate torsional moment strengths by the present model show good results.