• Title/Summary/Keyword: Ultimate pressure

Search Result 270, Processing Time 0.062 seconds

Effect of Boundary Conditions of Failure Pressure Models on Reliability Estimation of Buried Pipelines

  • Lee, Ouk-Sub;Pyun, Jang-Sik;Kim, Dong-Hyeok
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.6
    • /
    • pp.12-19
    • /
    • 2003
  • This paper presents the effect of boundary conditions in various failure pressure models published for the estimation of failure pressure. Furthermore, this approach is extended to the failure prediction with the aid of a failure probability model. The first order Taylor series expansion of the limit state function is used in order to estimate the probability of failure associated with each corrosion defect in buried pipelines for long exposure period with unit of years. A failure probability model based on the von-Mises failure criterion is adapted. The log-normal and standard normal probability functions for varying random variables are adapted. The effects of random variables such as defect depth, pipe diameter, defect length, fluid pressure, corrosion rate, material yield stress, material ultimate tensile strength and pipe thickness on the failure probability of the buried pipelines are systematically investigated for the corrosion pipeline by using an adapted failure probability model and varying failure pressure model.

Assessment of swelling pressure of stabilized Bentonite

  • Angin, Zekai;Ikizler, Sabriye Banu
    • Geomechanics and Engineering
    • /
    • v.15 no.6
    • /
    • pp.1219-1225
    • /
    • 2018
  • In this study, a comprehensive laboratory experimental programme was conducted on expansive soil with a high swelling potential to study the influence of different additive materials on swelling pressure and index properties. Lime, sand, multifilament fiber and fibrillated fiber were used for stabilization of expansive soil. Lime, sand and fibers were respectively added to the expansive soil at 0-7%, 0-80%, 0-0.5%. On each mixture that was prepared by the proportions mentioned above, Atterberg limits, compaction, and swelling pressure tests were conducted. From the result of these experiments, the swelling pressure-time relation could be replaced by a rectangular hyperbola established to facilitate the prediction of ultimate percent swelling with a few initial data points. The best type of additive and its optimum ratio for engineering purposes could be estimated rapidly by this approach.

Optimal Design of Submarine Pressure Hull Structures Using Genetic Algorithm (유전 알고리즘을 적용한 잠수함 압력선체 최적 구조설계)

  • Cho, Yoon Sik;Paik, Jeom Kee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.5
    • /
    • pp.378-386
    • /
    • 2017
  • In this paper, a method is presented for the optimal design of submarine pressure hull structures by taking advantage of genetic algorithm techniques. The objective functions and design constraints in the process of structural optimization are based on the ultimate limit states of hull structures. One of the benefits associated with the utilization of genetic algorithm is that the optimization process can be completed within short generations of design variables for the pressure hull structure model. Applied examples confirm that the proposed method is useful for the optimal design of submarine pressure hull structures. Details of the design procedure with applied examples are documented. The conclusions and insights obtained from the study are summarized.

Simple Formulae for Buckling and Ultimate Strength Estimation of Plates Subjected to Water Pressure and Uniaxial Compression (수압(水壓)과 압축력(壓縮力)을 받는 평판(平板)의 좌굴(挫屈) 및 최종강도(最終强度) 추정식(推定式))

  • Jeom-K.,Paik;Chang-Y.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.25 no.4
    • /
    • pp.69-80
    • /
    • 1988
  • This paper proposes simple formulae for buckling and ultimate strength estimation of plates subjected to water pressure and uniaxial compression. For the construction of a formula for elastic buckling strength estimation, parametric study for actual ship plates with varying aspect ratios and the magnitude of water pressure is carried out by means of principle of minimum potential energy. Based on the results by parametric study, a new formula is approximately expressed as a continuous function of loads and aspect ratio. On the other hand, in order to get a formula for ultimate strength estimation, in-plane stress distribution of plates is investigated through large deflection analysis and total in-plane stresses are expressed as an explicit form. By applying Mises's plasticity condition, ultimate strength criterion is then derives. In the case of plates under relatively small water pressure, the results by the proposed formulae are in good agreement compared with those by other methods and experiment. But present formula overestimates the ultimate strength in the range of large water pressure. However, actual ship plates are subjected to relatively small water pressure except for the impact load due to slamming etc.. Therefore, it is considered that present formulae can be applied for the practical use.

  • PDF

Experimental study on the longitudinal load transfer of a shallow tunnel depending on the deformation tunnel face (I) (얕은 터널의 굴진면 변형에 따른 종방향 하중전이 특성에 대한 실험적 연구(I))

  • Kim, Yang Woon;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.5
    • /
    • pp.487-497
    • /
    • 2016
  • If a tunnel is excavated, the released stress is redistributed in the ground around the tunnel face, which lead the stress state of the surrounding ground of the tunnel and the load acting on the tunnel support to change. If the tunnel face deforms, the ground ahead of it is relaxed, and the earth pressure acting on it decreases. And if the displacement increases so much that, the ground ahead of the tunnel face reaches in failure state. At this time, load would be transferred longitudinally in the tunnel, depending on the cover and the face deformations. The longitudinal load transfers in the tunnels induced by the tunnelling has been often studied; however, the relation between the deformation of the tunnel face and the longitudinal load transfer was rarely studied. Therefore in this study assesses the characteristics of the longitudinal load transfer as the face was failed by displacement by conducting a model test in a shallow tunnel. In other words, the longitudinal load transfer of the tunnel with the progress of the face deform was measured by conducting a model test, beginning at the state of earth pressure at rest. As results of this study, most of the longitudinal load transfers occurred drastically at the beginning of the displacement of the tunnel face, and as the displacement of the face approached the ultimate displacement, it converged to the ultimate displacement at a gentler slope. In other words, when the ground ahead of the tunnel face was still in an elastic state, the longitudinally transferred load increased sharply at the beginning stage but it tended to increase gradually if it approached to the ultimate limit. Thus, it was noted that the earth pressure in the face and the longitudinal load transfer of the tunnel had the same decreasing tendency.

Numerical studies of the failure modes of ring-stiffened cylinders under hydrostatic pressure

  • Muttaqie, Teguh;Thang, Do Quang;Prabowo, Aditya Rio;Cho, Sang-Rai;Sohn, Jung Min
    • Structural Engineering and Mechanics
    • /
    • v.70 no.4
    • /
    • pp.431-443
    • /
    • 2019
  • The present paper illustrates a numerical investigation on the failure behaviour of ring-stiffened cylinder subjected to external hydrostatic pressure. The published test data of steel welded ring-stiffened cylinder are surveyed and collected. Eight test models are chosen for the verification of the modelling and FE analyses procedures. The imperfection as the consequences of the fabrication processes, such as initial geometric deformation and residual stresses due to welding and cold forming, which reduced the ultimate strength, are simulated. The results show that the collapse pressure and failure mode predicted by the nonlinear FE analyses agree acceptably with the experimental results. In addition, the failure mode parameter obtained from the characteristic pressure such as interframe buckling pressure known as local buckling pressure, overall buckling pressure, and yield pressure are also examined through the collected data and shows a good correlation. A parametric study is then conducted to confirm the failure progression as the basic parameters such as the shell radius, thickness, overall length of the compartment, and stiffener spacing are varied.

A Study on the Behaviour of Jacket Anchor (자켓앵커 거동특성에 관한 연구)

  • Kim, Dong-Hee;Kim, In-Chul;Kong, Hyun-Seok;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.89-97
    • /
    • 2008
  • A series of field tests were performed to investigate the behavior of jacket anchor and to evaluate the ultimate bond stress of jacket anchor. From twelve sets of field tests on the jacket anchor and general type ground anchor, it was observed that the pullout resistance of jacket anchor is significantly larger than that of the ground anchor and that the plastic deformation of jacket anchor is significantly smaller than that of general ground anchor at the same loading cycle. Especially in gravel layers, the jacket anchor provides more than 250% increase in ultimate resistance and more than 600% reduction in plastic deformation, compared with the general ground anchor. Finally, the relationship between the injection pressure and overburden pressure is proposed to determine the optimum injection pressure, based on additional field test results.

Compressive behaviour of circular steel tube-confined concrete stub columns with active and passive confinement

  • Nematzadeh, Mahdi;Hajirasouliha, Iman;Haghinejad, Akbar;Naghipour, Morteza
    • Steel and Composite Structures
    • /
    • v.24 no.3
    • /
    • pp.323-337
    • /
    • 2017
  • This paper presents the results of a comprehensive experimental investigation on the compressive behaviour of steel tube-confined concrete (STCC) stub columns with active and passive confinement. To create active confinement in STCC columns, an innovative technique is used in which steel tube is laterally pre-tensioned while the concrete core is simultaneously pre-compressed by applying pressure on fresh concrete. A total of 135 STCC specimens with active and passive confinement are tested under axial compression load and their compressive strength, ultimate strain capacity, axial and lateral stress-strain curves and failure mode are evaluated. The test variables include concrete compressive strength, outer diameter to wall thickness ratio of steel tube and prestressing level. It is shown that applying active confinement on STCC specimens can considerably improve their mechanical properties. However, applying higher prestressing levels and keeping the applied pressure for a long time do not considerably affect the mechanical properties of actively confined specimens. Based on the results of this study, new empirical equations are proposed to estimate the axial strength and ultimate strain capacity of STCC stub columns with active and passive confinement.