• 제목/요약/키워드: Ultimate moment capacity

검색결과 162건 처리시간 0.019초

Behavior of circular CFT columns subject to axial force and bending moment

  • Kwak, Ji-Hyun;Kwak, Hyo-Gyoung;Kim, Jin-Kook
    • Steel and Composite Structures
    • /
    • 제14권2호
    • /
    • pp.173-190
    • /
    • 2013
  • The major objective of this paper is to evaluate the behavior and ultimate resisting capacity of circular CFT columns. To consider the confinement effect, proper material models with respect to the confinement pressure are selected. A fiber section approach is adopted to simulate the nonlinear stress distribution along the section depth. Material nonlinearity due to the cracking of concrete and the yielding of the surrounding steel tube, as well as geometric nonlinearity due to the P-${\Delta}$ effect, are taken into account. The validity of the proposed numerical analysis model is established by comparing the analytical predictions with the results from previous experimental studies about pure bending and eccentric axial loading. Numerical predictions using an unconfined material model were also compared to investigate the confinement effects on various loading combinations. The ultimate resisting capacities predicted by the proposed numerical model and the design guidelines in Eurocode 4 are compared to evaluate the existing design recommendation.

Theoretical study of sleeved compression members considering the core protrusion

  • Zhang, Chenhui;Deng, Changgen
    • Structural Engineering and Mechanics
    • /
    • 제66권6호
    • /
    • pp.783-792
    • /
    • 2018
  • This paper presents a detailed theoretical study of the sleeved compression members based on a mechanical model. In the mechanical model, the core protrusion above sleeve and the contact force between the core and sleeve are specially taken into account. Via the theoretical analyses, load-displacement relationships of the sleeved compression members are obtained and verified by the experimental results. On the basis of the core moment distribution changing with the increase of the applied axial load, failure mechanism of the sleeved compression members is assumed and proved to be consistent with the experimental results in terms of the failure modes and the ultimate bearing capacities. A parametric study is conducted to quantify how essential factors including the core protrusion length above sleeve, stiffness ratio of the core to sleeve, core slenderness ratio and gap between the core and sleeve affect the mechanical behaviors of the sleeved compression members, and it is concluded that the constrained effect of the sleeve is overestimated neglecting the core protrusion; the improvement of ultimate bearing capacity for the sleeved compression member is considered to be decreasing with the decrease of the core slenderness ratio and for the sleeved compression member with core of small slenderness ratio, small gap and small stiffness ratio are preferred to obtain larger ultimate bearing capacity and stiffness.

강판 콘크리트(SC) 기둥과 H형강 보의 용접 접합부에 대한 반복 이력 실험 (Cyclic Test of welding connections for Steel-Plate Concrete Column to H-shaped Steel Girders)

  • 박호영;강철규;최병정
    • 한국지진공학회논문집
    • /
    • 제18권1호
    • /
    • pp.63-71
    • /
    • 2014
  • This study presents an experimental study of the structural behavior for steel plate-concrete column-to-steel girder connections. Experiments were carried out to investigate the moment-rotation characteristics, failure behavior and ultimate moment capacity of these connections. The results of this experimental study involving three welded moment-resisting connections subjected to cyclic loading are presented. The specimens were fabricated at full scale to evaluate their hysteretic behavior. A description of the test specimens, the details of the joint, the test system and the testing methods are described. The test results showed that the structural behavior of these composite connections was influenced by the connection details.

Probabilistic computation of the structural performance of moment resisting steel frames

  • Ceribasi, Seyit
    • Steel and Composite Structures
    • /
    • 제24권3호
    • /
    • pp.369-382
    • /
    • 2017
  • This study investigates the reliability of the performance levels of moment resisting steel frames subjected to lateral loads such as wind and earthquake. The reliability assessment has been performed with respect to three performance levels: serviceability, damageability, and ultimate limit states. A four-story moment resisting frame is used as a typical example. In the reliability assessment the uncertainties in the loadings and in the capacity of the frame have been considered. The wind and earthquake loads are assumed to have lognormal distribution, and the frame resistance is assumed to have a normal distribution. In order to obtain an appropriate limit state function a linear relation between the loading and the deflection is formed. For the reliability analysis an algorithm has been developed for determination of limit state functions and iterations of the first order reliability method (FORM) procedure. By the method presented herein the multivariable analysis of a complicated reliability problem is reduced to an S-R problem. The procedure for iterations has been tested by a known problem for the purpose of avoiding convergence problems. The reliability indices for many cases have been obtained and also the effects of the coefficient of variation of load and resistance have been investigated.

에폭시모르타르로 보강된 부식철근 RC보의 구조적 성능 (Structural Performance of Reinforcement corrosion RC Beams Strengthened with Epoxy Mortar System)

  • 한복규;홍건호;신영수;정란
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.769-774
    • /
    • 2000
  • The purpose of this study was to investigate the structural performance of reinforcement corrosion reinforced concrete beams strengthened with epoxy mortar system. Main test parameters are existence and the magnitude of the reinforcement corrosion and the reinforcing bar and the tensile reinforcement ratio of the specimens. eight beam specimens were tested to investigate the effectiveness of each test variables on maximum load capacity and failure mode. Test results showed that the ultimate moment of th specimens were higher tan the nominal moment and the flexural stiffness was increased about 2.5 times and the cracking moments occurred over 60% of the failure moment in comparison with same sized control beam. However, note that epoxy mortar may conduct member into brittle failure mode.

  • PDF

Probabilistic Analysis of Reinforced Concrete Beam and Slab Deflections Using Monte Carlo Simulation

  • Choi, Bong-Seob;Kwon, Young-Wung
    • KCI Concrete Journal
    • /
    • 제12권2호
    • /
    • pp.11-21
    • /
    • 2000
  • It is not easy to correctly predict deflections of reinforced concrete beams and one-way slabs due to the variability of parameters involved in the calculation of deflections. Monte Carlo simulation is used to assess the variability of deflections with known statistical data and probability distributions of variables. A deterministic deflection value is obtained using the layered beam model based on the finite element approach in which a finite element is divided into a number of layers over the depth. The model takes into account nonlinear effects such as cracking, creep and shrinkage. Statistical parameters were obtained from the literature. For the assessment of variability of deflections, 12 cases of one-way slabs and T-beams are designed on the basis of ultimate moment capacity. Several results of a probabilistic study are presented to indicate general trends indicated by results and demonstrate the effect of certain design parameters on the variability of deflections. From simulation results, the variability of deflections relies primarily on the ratio of applied moment to cracking moment and the corre-sponding reinforcement ratio.

  • PDF

Moment-rotation relationship of hollow-section beam-to-column steel joints with extended end-plates

  • Wang, Jia;Zhu, Haiming;Uy, Brian;Patel, Vipulkumar;Aslani, Farhad;Li, Dongxu
    • Steel and Composite Structures
    • /
    • 제29권6호
    • /
    • pp.717-734
    • /
    • 2018
  • This paper presents the flexural performance of steel beam-to-column joints composed of hollow structural section beams and columns. A finite element (FE) model was developed incorporating geometrical and material nonlinearities to evaluate the behaviour of joints subjected to bending moments. The numerical outcomes were validated with experimental results and compared with EN1993-1-8. The demountability of the structure was discussed based on the tested specimen. A parametric analysis was carried out to investigate the effects of steel yield strength, end-plate thickness, beam thickness, column wall thickness, bolt diameter, number of bolts and location. Consequently, an analytical model was derived based on the component method to predict the moment-rotation relationships for the sub-assemblies with extended end-plates. The accuracy of the proposed model was calibrated by the experimental and numerical results. It is found that the FE model is fairly reliable to predict the initial stiffness and moment capacity of the joints, while EN1993-1-8 overestimates the initial stiffness extensively. The beam-to-column joints are shown to be demountable and reusable with a moment up to 53% of the ultimate moment capacity. The end-plate thickness and column wall thickness have a significant influence on the joint behaviour, and the layout of double bolt-rows in tension is recommended for joints with extended end-plates. The derived analytical model is capable of predicting the moment-rotation relationship of the structure.

편심유공합성보의 종국내력 및 변형능력에 관한 실험적 연구 (An Experimental Study on the Ultimate Strength and Deformation Capacity of Composite Beams with Eccentric Web Openings)

  • 최산호;서성연
    • 한국강구조학회 논문집
    • /
    • 제12권5호통권48호
    • /
    • pp.595-604
    • /
    • 2000
  • 유공합성보는 공기조화설비등의 각종 배관으로 인한 용적률의 저하를 완화할 수 있고, 바람과 같은 수평력에 의한 층모멘트 감소등의 구조적 측면에서도 유용하다. 또한 휨강성도 증가되어 하중에 의한 처짐이 적어지고 진동하중이나 충격하중에도 유리하게 되어 건축물의 강성 및 내력을 높이기 위해 사용되고 있다. 그러나 개구부 위치 및 편심여부에 따라 외력에 대한 구조적인 거동이 달라지게 되므로 이에 대한 적절한 검토가 요구된다. 이에 본 논문은 편심유공합성보의 종국내력 및 변형능력에 관한 실험적 연구로서, 무공합성보인 기준시험체와 중심 및 상 하 편심유공합성보 시험체의 실험 및 이론적 고찰을 통하여 각 시험체들의 항복 및 최대내력, 휨 및 전단강성, 개구부주위의 응력분포, 그리고 모멘트-전단력 상관관계등의 구조적 특성을 규명코자 한다.

  • PDF

Flexural strengthening of continuous unbonded post-tensioned concrete beams with end-anchored CFRP laminates

  • Ghasemi, Saeed;Maghsoudi, Ali A.;Bengar, Habib A.;Ronagh, Hamid R.
    • Structural Engineering and Mechanics
    • /
    • 제53권6호
    • /
    • pp.1083-1104
    • /
    • 2015
  • This paper provides the results of an experimental investigation into the flexural behavior of continuous two-span unbonded post-tensioned high strength concrete (HSC) beams, strengthened by end-anchored CFRP laminates of different configurations in the hogging region. Implementing two different configurations of end-anchorage systems consisting of steel plates and bolts and carefully monitoring the development of strains throughout the load history using sufficiently large number of strain gauges, the response of beams including the observed crack propagations, beam deflection, modes of failure, capacity enhancement at service and ultimate and the amount of moment redistribution are measured, presented and discussed. The study is appropriate in the sense that it covers the more commonly occurring two span beams instead of the simply supported beams investigated by others. The experiments reconfirmed the finding of others that proper installation of composite strengthening system is most important in the quality of the bond which is essential for the internal transfer of forces. It was also found that for the tested two span continuous beams, the capacity enhancement is more pronounced at the serviceability level than the ultimate. This is an important finding as the design of these beams is mostly governed by the serviceability limit state signifying the appropriateness of the suggested strengthening method. The paper provides quantitative data on the amount of this capacity enhancement.

탄소섬유 및 유리섬유로 보강한 합성보의 내력산정과 보강효과에 대한연구 (A Study on the Strength Capacity and the Strengthening Effects of Steel Reinforced Concrete(SRC) Beams with Carbon Fiber Sheets (CFS) and Glass Fiber Sheets (GFS))

  • 김희규;신영수;최완철;홍영균
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.565-570
    • /
    • 1997
  • This study is on the strength capacity and the strengthening effects of crarbon fiber sheets(CFS) and glass fiber sheets (GFS) on steel reinforced concrete(SRC) beams. SRC beams are often used on high-rise building construction to save story height and construction cost. However, there are no strengthening design code in Korea and most engineers design it as steel beams ignored the composite effect if reinforced concrete. Test results on steel reinforced concrete beams reveal thar the strength capacity of SRC beam is more than simple addition of steel and reinforced concrete beams. In case of steel reinforced concrete beams, ultimate moment capacity of strengthening beam of carbon fiber sheets is 120% of non-strengthening one.

  • PDF