• Title/Summary/Keyword: Ultimate end bearing capacity

Search Result 38, Processing Time 0.022 seconds

Interfacial mechanical behaviors of RC beams strengthened with FRP

  • Deng, Jiangdong;Liu, Airong;Huang, Peiyan;Zheng, Xiaohong
    • Structural Engineering and Mechanics
    • /
    • v.58 no.3
    • /
    • pp.577-596
    • /
    • 2016
  • FRP-concrete interfacial mechanical properties determine the strengthening effect of RC beams strengthened with FRP. In this paper, the model experiments were carried out with eight specimens to study the failure modes and the strengthening effect of RC beams strengthened with FRP. Then a theoretical model based on interfacial performances was proposed and interfacial mechanical behaviors were studied. Finite element analysis confirmed the theoretical results. The results showed that RC beams strengthened with FRP had three loading stages and that the FRP strengthening effects were mainly exerted in the Stage III after the yielding of steel bars, including the improvement of the bearing capacity, the decreased ultimate deformation due to the sudden failure of FRP and the improvement of stiffness in this stage. The mechanical formulae of the interfacial shear stress and FRP stress were established and the key influence factors included FRP length, interfacial bond-slip parameter, FRP thickness, etc. According to the theoretical analysis and experimental data, the calculation methods of interfacial shear stress at FRP end and FRP strain at midspan were proposed. When FRP bonding length was shorter, interfacial shear stress at FRP end was larger that led to concrete cover peeling failure. When FRP was longer, FRP reached the ultimate strain and the fracture failure of FRP occurred. The theoretical results were well consistent with the experimental data.

Strengthening of hollow brick infill walls with perforated steel plates

  • Aykac, Sabahattin;Kalkan, Ilker;Seydanlioglu, Mahmut
    • Earthquakes and Structures
    • /
    • v.6 no.2
    • /
    • pp.181-199
    • /
    • 2014
  • The infill walls, whose contribution to the earthquake resistance of a structure is generally ignored due to their limited lateral rigidities, constitute a part of the lateral load bearing system of an RC frame structure. A common method for improving the earthquake behavior of RC frame structures is increasing the contribution of the infill walls to the overall lateral rigidity by strengthening them through different techniques. The present study investigates the influence of externally bonded perforated steel plates on the load capacities, rigidities, and ductilities of hollow brick infill walls. For this purpose, a reference (unstrengthened) and twelve strengthened specimens were subjected to monotonic diagonal compression. The experiments indicated that the spacing of the bolts, connecting the plates to the wall, have a more profound effect on the behavior of a brick wall compared to the thickness of the strengthening plates. Furthermore, an increase in the plate thickness was shown to result in a considerable improvement in the behavior of the wall only if the plates are connected to the wall with closely-spaced bolts. This strengthening technique was found to increase the energy absorption capacities of the walls between 4 and 14 times the capacity of the reference wall. The strengthened walls reached ultimate loads 30-160% greater than the reference wall and all strengthened walls remained intact till the end of the test.

A Numerical Study on the Estimation Method of the Results of Static Pile Load Test Using the Results of Bi-directional Pile Load Test of Barrette Piles (바렛말뚝의 양방향재하시험을 이용한 정적압축재하시험 결과 추정방법에 관한 수치해석적 연구)

  • Hong, Young-Suk;Yoo, Jae-Won;Kang, Sang-Kyun;Choi, Moon-Bong;Lee, Kyung-Im
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.1
    • /
    • pp.39-53
    • /
    • 2019
  • Bi-directional pile load test (briefly called 'BDH PLT') cannot be performed at loading levels where ultimate bearing capacity could be assessed in field, it is not possible to precisely determine both ultimate load and yield load and under loading. Since the load is transmitted separately to the skin and the end unlike the static pile load test (briefly called 'SPLT') and the direction of loading on the skin is opposite, such methods could have a result different from actual movements of shafts. In this study, three-dimensional finite element method (briefly called '3D FEM') analysis was conducted from results of the BDH PLT, made with barret piles, which were large-diameter cast-in-place concrete piles, and the calculated design constants were applied to the 3D FEM analysis of the SPLT to interpret them numerically and then, actual behaviors of cast-in-place concrete piles were estimated. First, using the results of the BDH PLT with cast-in-place concrete piles, behaviors of the piles made by loading upwards and downwards were analyzed to calculate load-displacement. Second, the design constants, calculated by the 3D FEM analysis and the back analysis, were applied on the 3D FEM analysis for the SPLT, and from these results, behaviors of the SPLT through the BDH PLT was analyzed. Last, the results of the 3D FEM analysis of the SPLT through the BDH PLT was expressed in relationships as {A ratio of bearing capacity of the SPLT and of the BDH PLT (y)} ~ {A ratio of reference displacement and pile circumference (x)}, and they were all classified by reference displacement at 10.0 mm, 15.0 mm, and 25.4 mm.

Behaviour of cold-formed steel concrete infilled RHS connections and frames

  • Angeline Prabhavathy, R.;Samuel Knight, G.M.
    • Steel and Composite Structures
    • /
    • v.6 no.1
    • /
    • pp.71-85
    • /
    • 2006
  • This paper presents the results of a series of tests carried out on cold-formed steel rectangular hollow and concrete infilled beam to column connections and frames. A stub column was chosen such that overall buckling does not influence the connection behaviour. The beam chosen was a short-span cantilever with a concentrated load applied at the free end. The beam was connected to the columns along the strong and weak axes of columns and these connections were tested to failure. Twelve experiments were conducted on cold-formed steel direct welded tubular beam to column connections and twelve experiments on connections with concrete infilled column subjected to monotonic loading. In all the experiments conducted, the stiffness of the connection, the ductility characteristics and the moment rotation behaviour were studied. The dominant mode of failure in hollow section connections was chord face yielding and not weld failure. Provision of concrete infill increases the stiffness and the ultimate moment carrying capacity substantially, irrespective of the axis of loading of the column. Weld failure and bearing failure due to transverse compression occurred in connections with concrete infilled columns. Six single-bay two storied frames both with and without concrete infill, and columns loaded along the major and minor axes were tested to failure. Concentrated load was applied at the midspan of first floor beam. The change in behaviour of the frame due to provision of infill in the column and in the entire frame was compared with hollow frames. Failure of the weld at the junction of the beam occurred for frames with infilled columns. Design expressions are suggested for the yielding of the column face in hollow sections and bearing failure in infilled columns which closely predicted the experimental failure loads.

A Study on the Behaviour of Prebored and Precast Steel Pipe Piles from Full-Scale Field Tests and Class-A and C1 Type Numerical Analyses (현장시험과 Class-A 및 C1 type 수치해석을 통한 강관매입말뚝의 거동에 대한 연구)

  • Kim, Sung-Hee;Jung, Gyoung-Ja;Jeong, Sang-Seom;Jeon, Young-Jin;Kim, Jeong-Sub;Lee, Cheol-Ju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.7
    • /
    • pp.37-47
    • /
    • 2017
  • In this study, a series of full-scale field tests on prebored and precast steel pipe piles and the corresponding numerical analysis have been conducted in order to study the characteristics of pile load-settlement relations and shear stress transfer at the pile-soil interface. Dynamic pile load tests (EOID and restrike) have been performed on the piles and the estimated design pile loads from EOID and restrike tests were analysed. Class-A type numerical analyses conducted prior to the pile loading tests were 56~105%, 65~121% and 38~142% respectively of those obtained from static load tests. In addition, design loads estimated from the restrike tests indicate increases of 12~60% compared to those estimated in the EOID tests. The EOID tests show large end bearing capacity while the restrike tests demonstrate increased skin friction. When impact energy is insufficient during the restrike tests, the end bearing capacity may be underestimated. It has been found that total pile capacity would be reasonably estimated if skin friction from the restrike tests and end bearing capacity from the EOID are combined. The load-settlement relation measured from the static pile load tests and estimated from the numerical modelling is in general agreement until yielding occurs, after which results from the numerical analyses substantially deviated away from those obtained from the static load tests. The measured pile behaviour from the static load tests shows somewhat similar behaviour of perfectly-elastic plastic materials after yielding with a small increase in the pile load, while the numerical analyses demonstrates a gradual increase in the pile load associated with strain hardening approaching ultimate pile load. It has been discussed that the load-settlement relation mainly depends upon the stiffness of the ground, whilst the shear transfer mechanism depends on shear strength parameters.

Evaluation of Yield Load in Pile Load Tests on Driven Piles (관입말뚝에 대한 연직재하시험시 항복하중의 판정법)

  • 홍원표;심기석
    • Geotechnical Engineering
    • /
    • v.5 no.1
    • /
    • pp.7-18
    • /
    • 1989
  • In pile load tests on end bearing piles, generally, it is not possible to continue loading to the ultimate load. Thus, the concept of yield load has been introduced for determining design loads Iron the pile load test records. The conventional rules to determine the yield load were not available for evaluation on pile load test records obtained in 6 fields nearby westers 8r Southern Coasts in Korea. A new rule 9.as presented to determine easily the yield load, based on investigations on the pile load test records. The yield load of piles is determined at the infiection point on semi-logarithmic coordinates (P-logS), in which load is plotted in normal scale and settlement is plotted in logarithmic scale. This method may not only save much costs and times but also present safe luorking circumstances for pile load tests in field. It was found that the yield load represented the elastic limit of the pile load-settlement behalf.iota. The ultimate load, which is given at 25.4mm settlement on pile head, was 1.5 times of the yield load. The allowable long-term and short-term load capacities were, respectively, 50% and 75% of the yield load. The safety factors to get the allowable pile capacity were obtained as 2.0~4.0 for the equations to predict the static pile capacity.

  • PDF

An Analysis on the Behavior Characteristics of the Side of Drilled Shafts in Rocks (암반에 근입된 현장타설말뚝의 주면부 거동특성 분석)

  • Lee, Hyukjin;Lee, Hyungkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.6
    • /
    • pp.101-111
    • /
    • 2006
  • In case of drilled shafts installed by drilling through soft overburden onto a strong rock, the piles can be regarded as end-bearing elements and their working load is determined by the safe working stress on the pile shaft at the point of minimum cross-section or by code of practice requirements. Drilled shafts drilled down for some depth into weak or weathered rocks and terminated within these rocks act partly as friction and partly as end-bearing piles. The base resistance component can contribute significantly to the ultimate capacity of the pile. However, the shaft resistance is typically mobilized at considerably smaller pile movements than that of the base. In addition, the base response can be adversely affected by any debris that is left in the bottom of the socket. The reliability of base response therefore depends on the use of a construction and inspection technique which leaves the socket free of debris. This may be difficult and costly to achieve, particularly in deep sockets, which are often drilled under water or drilling slurry. As a consequence of these factors, shaft resistance generally dominates pile performance at working loads. The efforts to improve the prediction of drilled shaft pile performance are therefore primarily concerned with the complex mechanisms of shaft resistance development. In this study, the numerical analyses are carried out to investigate the behavior characteristics of side of rock socketed drilled shafts varying the loading condition at the pile head. The difference of behavior characteristics of side resistance is also evaluated with the effects of modelling of asperity.

  • PDF

Pullout Behavior Characteristics of Enlarged Cylinder Type Anchor Using Numerical Analysis (수치해석을 이용한 확공형 앵커의 인발거동 특성)

  • Moon, Joon-Shik;Lee, Min-Joo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.113-118
    • /
    • 2017
  • Numerical analysis was carried out using a finite element analysis program to analyze the behavior characteristics of enlarged cylinder type anchor. It was found that the ultimate resistance of enlarged cylinder type anchor increases with the enlargement angle from numerical analysis for various enlargement angle cases. In the case of $30-60^{\circ}$ of enlargement angle, the deformation and stress distribution characteristics in anchor are similar regardless of enlargement angle. However, when the same tensile force is applied, there is a difference in the degree of frictional resistance because of difference of displacement of top of grouting zone. Also, it was found that the maximum compressive force and tensile force were generated at the cone of the upper portion of the grouting zone, and tensile fracture of the upper grouting portion is likely to occur.