• Title/Summary/Keyword: Ultimate Resisting Capacity

Search Result 45, Processing Time 0.021 seconds

Shear Strength of Retrofitted RC Squat Wall by Additional Boundary Element (단부 증타 보강된 RC 전단벽체의 전단강도)

  • Yi, You-Sun;Hong, Sung-Gul;Park, Young-Mi
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.5
    • /
    • pp.489-499
    • /
    • 2015
  • This study suggested shear strength prediction model for retrofitted single-layered RC squat wall by providing column element as additional boundary element. This model revised existing shear strength prediction model of shear wall to consider detail and shear deformation capacity of column by assuming the length that concentrated shear deformation of the column is occurred. It was able to suggest additional compatibility condition related to shear strain of retrofitted of retrofitted shear wall at the ultimate state by using this length. Therefore, this study proposed a flow chart for predicting shear strength of the retrofitted shear wall considering this additional condition. Moreover, this study also proposed a method for predicting initial stiffness of the retrofitted shear wall by transforming the wall's resisting mechanism against to lateral load to a single diagonal strut mechanism. The proposed methods can predict shear strength and initial stiffness of not only the retrofitted shear wall of this study, also infilled RC shear wall in RC frame.

Behavior of improved through-diaphragm connection to square tubular column under tensile loading

  • Qin, Ying;Zhang, Jing-Chen;Shi, Peng;Chen, Yi-Fu;Xu, Yao-Han;Shi, Zuo-Zheng
    • Structural Engineering and Mechanics
    • /
    • v.68 no.4
    • /
    • pp.475-483
    • /
    • 2018
  • Square tubular columns are commonly used in moment resisting frames, while through-diaphragm connection is the most typical configuration detail to connect the H-shaped beam to the column. However, brittle fracture normally occurs at the complete joint penetration weld between the beam flange and the through-diaphragm due to the stress concentration caused by the geometrical discontinuity. Accordingly, three improved types of through-diaphragm are presented in this paper to provide smooth force flow path comparing to that of conventional connections. Tensile tests were conducted on four specimens and the results were analyzed in terms of failure modes, load-displacement response, yield and ultimate capacity, and initial stiffness. Furthermore, strain distributions on the through-diaphragm, the beam flange plate, and the column face were comprehensively evaluated and discussed. It was found that all the proposed three types of improved through-diaphragm connections were able to reduce the stress concentration in the welds between the beam flange and the through-diaphragm. Furthermore, the stress distribution in connection with longer tapered through-diaphragm was more uniform.

Seismic behavior and design method of socket self-centering bridge pier with hybrid energy dissipation system

  • Guo, Mengqiang;Men, Jinjie;Fan, Dongxin;Shen, Yanli
    • Earthquakes and Structures
    • /
    • v.23 no.3
    • /
    • pp.271-282
    • /
    • 2022
  • Seismic resisting self-centering bridge piers with high energy dissipation and negligible residual displacement after an earthquake event are focus topics of current structural engineering. The energy dissipation components of typical bridge piers are often relatively single; and exhibit a certain level of damage under earthquakes, leading to large residual displacements and low cumulative energy dissipation. In this paper, a novel socket self-centering bridge pier with a hybrid energy dissipation system is proposed. The seismic resilience of bridge piers can be improved through the rational design of annular grooves and rubber cushions. The seismic response was evaluated through the finite element method. The effects of rubber cushion thickness, annular groove depth, axial compression ratio, and lateral strength contribution ratio of rubber cushion on the seismic behavior of bridge piers are systematically studied. The results show that the annular groove depth has the greatest influence on the seismic performance of the bridge pier. Especially, the lateral strength contribution ratio of the rubber cushion mainly depends on the depth of the annular groove. The axial compression ratio has a significant effect on the ultimate bearing capacity. Finally, the seismic design method is proposed according to the influence of the above research parameters on the seismic performance of bridge piers, and the method is validated by an example. It is suggested that the range of lateral strength contribution ratio of rubber cushion is 0.028 ~ 0.053.

An Improved Bond Slip Model of CFT Columns for Nonlinear Finite Element Analysis (CFT 기둥의 비선형 유한요소해석을 위한 개선된 강관-콘크리트 간 부착 모델 개발)

  • Kwon, Yangsu;Kwak, Hyo-Gyoung;Hwang, Ju-Young;Kim, Jin-Kook;Kim, Jong-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.213-220
    • /
    • 2015
  • CFT column has a lot of structural advantages due to the composite behavior between in-filled concrete and steel tube. This paper deals with the development of an effective numerical model which can consider the bond-slip behavior between both components of concrete matrix and steel tube without taking double nodes. Since the applied axial load to in-filled concrete matrix is delivered to steel tube by the confinement effect and the friction, the governing equation related to the slip behavior can be constructed on the basis of the force equilibrium and the compatability conditions. In advance, the force and displacement relations between adjacent two nodes make it possible to express the slip behavior with the concrete nodes only. This model results in significant savings in the numerical modeling of CFT columns to take into account the effect of bond-slip. Finally, correlation studies between numerical results and experimental data are conducted to verifying the efficiency of the introduced numerical model.

Evaluation of Steel Tube Connection in Precast Concrete Double Wall System (프리캐스트 콘크리트 더블월 시스템의 각형 강관 연결부 성능평가 )

  • Yujae Seo;Hyunjin Ju
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.2
    • /
    • pp.25-32
    • /
    • 2023
  • In this study, a double wall system is introduced, which was invented to simplify the complicated manufacturing process of the existing precast concrete (PC) double wall systems and to remove defects such as laitance that may occur during the production of concrete panels. An experimental study was conducted to investigate the tensile resisting capacity of the steel tube which is embedded in the precast concrete panel to keep the spacing between PC panels and to prevent damage of the PC panels during transportation and casting concrete onsite. The experiment was planned to determine the detail of effective steel tube connection considering the steel plate treatment method according to the formation of the opening, the presence of embedded concrete, and the reinforcement welding for additional dowel action as key variables. As a result, the ultimate tensile strength increased by 20-30% compared to the control specimen (ST) except for the steel tube specimen (ST_CP) which has steel plates bent inward at the end part of the steel tube. Since the specimen (ST_CON) filled with concrete inside the control specimen has no additional process and cost for the steel tube connections compared to the control specimen during the production of the developed double wall system, it is determined to be the appropriate detail of steel tube connection.