• Title/Summary/Keyword: Ultimate Heat Sink

Search Result 13, Processing Time 0.019 seconds

A Systems Engineering Approach to Predict the Success Window of FLEX Strategy under Extended SBO Using Artificial Intelligence

  • Alketbi, Salama Obaid;Diab, Aya
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.2
    • /
    • pp.97-109
    • /
    • 2020
  • On March 11, 2011, an earthquake followed by a tsunami caused an extended station blackout (SBO) at the Fukushima Dai-ichi NPP Units. The accident was initiated by a total loss of both onsite and offsite electrical power resulting in the loss of the ultimate heat sink for several days, and a consequent core melt in some units where proper mitigation strategies could not be implemented in a timely fashion. To enhance the plant's coping capability, the Diverse and Flexible Strategies (FLEX) were proposed to append the Emergency Operation Procedures (EOPs) by relying on portable equipment as an additional line of defense. To assess the success window of FLEX strategies, all sources of uncertainties need to be considered, using a physics-based model or system code. This necessitates conducting a large number of simulations to reflect all potential variations in initial, boundary, and design conditions as well as thermophysical properties, empirical models, and scenario uncertainties. Alternatively, data-driven models may provide a fast tool to predict the success window of FLEX strategies given the underlying uncertainties. This paper explores the applicability of Artificial Intelligence (AI) to identify the success window of FLEX strategy for extended SBO. The developed model can be trained and validated using data produced by the lumped parameter thermal-hydraulic code, MARS-KS, as best estimate system code loosely coupled with Dakota for uncertainty quantification. A Systems Engineering (SE) approach is used to plan and manage the process of using AI to predict the success window of FLEX strategies under extended SBO conditions.

Visualization and 3D Numerical Analysis of the Circulation Flow of the Neutron Moderator in a Heavy-Water Nuclear Reactor (가압중수형 원자로의 중성자 감속재 순환 유동가시화와 삼차원 전산해석)

  • Eom, Tae-Kwang;Lee, Jae-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.189-196
    • /
    • 2012
  • The heavy moderator acts as the ultimate heat-sink in an operating CANDU reactor. HUKINS has been developed to investigate moderator flow patterns. HUKINS consists of a 38.4-mm-thick cylindrical shell with a 0.95 m inner diameter and 88 sus-tubes that produce a total heat of 10 kW. A chemical visualization method was selected to estimate the occurrence of typical moderator flow patterns. Momentum-dominated flow, mixed flow, and buoyancy-dominated flow are detected under conditions of a heat load of 7.7 kW and input mass flow rates of 4, 7, and 11 L/min. The experimental results are similar to the results of a CFD simulation that consisted of approximately 1.9 million grids and was conducted using the k-${\varepsilon}$ turbulence model. Therefore, both the present experiments and simulations using HUKINS, a 1/8-scale model, represent all three important flow patterns expected in the real CANDU6 reference reactor. Thus, it has been demonstrated that HUKINS could be useful in the study of CANDU6 moderator circulation.

Combustion Characteristic Study of LNG Flame in an Oxygen Enriched Environment (산소부화 조건에 따른 LNG 연소특성 연구)

  • Kim, Hey-Suk;Shin, Mi-Soo;Jang, Dong-Soon;Lee, Dae-Geun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.1
    • /
    • pp.23-30
    • /
    • 2007
  • The ultimate objective of this study is to develop oxygen-enriched combustion techniques applicable to the system of practical industrial boiler. To this end the combustion characteristics of lab-scale LNG combustor were investigated as a first step using the method of numerical simulation by analyzing the flame characteristics and pollutant emission behaviour as a function of oxygen enrichment level. Several useful conclusions could be drawn based on this study. First of all, the increase of oxygen enrichment level instead of air caused long and thin flame called laminar flame feature. This was in good agreement with experimental results appeared in open literature and explained by the effect of the decrease of turbulent mixing due to the decrease of absolute amount of oxidizer flow rate by the absence of the nitrogen species. Further, as expected, oxygen enrichment increased the flame temperatures to a significant level together with concentrations of $CO_2$ and $H_2O$ species because of the elimination of the heat sink and dilution effects by the presence of $N_2$ inert gas. However, the increased flame temperature with $O_2$ enriched air showed the high possibility of the generation of thermal $NO_x$ if nitrogen species were present. In order to remedy the problem caused by the oxygen-enriched combustion, the appropriate amount of recirculation $CO_2$ gas was desirable to enhance the turbulent mixing and thereby flame stability and further optimum determination of operational conditions were necessary. For example, the adjustment of burner with swirl angle of $30\sim45^{\circ}$ increased the combustion efficiency of LNG fuel and simultaneously dropped the $NO_x$ formation.