• 제목/요약/키워드: Ultimate Compressive Strength

검색결과 413건 처리시간 0.033초

Experimental and theoretical research on the compression performance of CFRP sheet confined GFRP short pole

  • Chen, Li;Zhao, Qilin;Jiang, Kebin
    • Structural Engineering and Mechanics
    • /
    • 제40권2호
    • /
    • pp.215-231
    • /
    • 2011
  • The axial compressive strength of unidirectional FRP is generally quite lower than its axial tensile strength. This fact decreases the advantages of FRP as main load bearing member in engineering structure. In order to restrain the lateral expansion and splitting of GFRP, and accordingly heighten its axial compressive bearing capacity, a project that to confine GFRP pole with surrounding CFRP sheet is suggested in the present study. The Experiment on the CFRP sheet confined GFRP poles showed that a combined structure of high bearing capacity was attained. Basing on the experiment research a theoretical iterative calculation approach is suggested to predict the ultimate axial compressive stress of the combined structure, and the predicted results agree well with the experimental results. Then the influences of geometrical parameters on the ultimate axial compressive stress of the combined structure are also analyzed basing on this approach.

Axial compressive residual ultimate strength of circular tube after lateral collision

  • Li, Ruoxuan;Yanagihara, Daisuke;Yoshikawa, Takao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.396-408
    • /
    • 2019
  • The tubes which are applied in jacket platforms as the supporting structure might be collided by supply vessels. Such kind of impact will lead to plastic deformation on tube members. As a result, the ultimate strength of tubes will decrease compared to that of intact ones. In order to make a decision on whether to repair or replace the members, it is crucial to know the residual strength of the tubes. After being damaged by lateral impact, the simply supported tubes will definitely loss a certain extent of load carrying capacity under uniform axial compression. Therefore, in this paper, the relationship between the residual ultimate strength of the damaged circular tube by collision and the energy dissipation due to lateral impact is investigated. The influences of several parameters, such as the length, diameter and thickness of the tube and the impact energy, on the reduction of ultimate strength are investigated. A series of numerical simulations are performed using nonlinear FEA software LS-DYNA. Based on simulation results, a non-dimensional parameter is introduced to represent the degree of damage of various size of tubes after collision impact. By applying this non-dimensional parameter, a simplified formula has been derived to describe the relationship between axial compressive residual ultimate and lateral impact energy and tube parameters. Finally, by comparing with the allowable compressive stress proposed in API rules (RP2A-WSD A P I, 2000), the critical damage of tube due to collision impact to be repaired is proposed.

대형 콘크리트 패널구조 수평접합부의 지지력 성능에 관한 연구 (Compressive Strength of Horizontal Joints in Precast Concrete Large Panel System)

  • 서수연;정봉오;이원호;이리형
    • 콘크리트학회지
    • /
    • 제6권2호
    • /
    • pp.138-147
    • /
    • 1994
  • 대형 콘크리트 판넬구조 수평접합부는 상부로부터 전달되는 축하중에 대하여 저항하게 되며 이때의 저항내력은 그라우트와 판넬의 강도, 접합부의 형태 및 단부 모멘트, 그라우트의 폭 등에 따라 변하게 된다. 본 연구는 패쇄형 수평접합부에 대한 실험연구로서 슬래브의 단부형태, 벽판넬의 단부보강 및 슬래브의 횡변위 구속에 따른 내력의 변화를 관찰하고자 하였다. 현재 대형 콘크리트 패널구조 수평접합부의 설계에 적용되고 있는 국내 규준식은 국내의 대형 콘크리트 패널구조와는 다소 다른 형태의 실험결과에 의해 유도된 식으로서 그 적용성에 대한 평가가 요망된다. 따라서 본 연구에서는 실험결과를 근거로 이에 대한 평가를 실시할 뿐만 아니라 폐쇄형 수평접합부의 내력을 평가할 수 있는 적합한 이론식을 제시 하였다. 실험결과, 상부 벽판넬의 단면이 결손(10mm)됨에 따라 약 23.5% 내력이 저감되는 것으로 나타났으며, 슬래브 단부형태의 따른 차이와 벽판넬의 단부보강에 따른 내력의 차이, 슬래브의 횡변위 구속 유무에 따른 내력의 차이는 거의 없는 것으로 나타났다. 또한, 제안되 이론식과 실험결과를 비교한 결과 이론식에 의한 결과가 실험결과와 좋은 대응을 보이는 것으로 나타났다.

Effect of confined concrete on compressive strength of RC beams

  • Radnic, Jure;Markic, Radoslav;Harapin, Alen;Matesan, Domagoj
    • Advances in concrete construction
    • /
    • 제1권3호
    • /
    • pp.215-225
    • /
    • 2013
  • The results of experimental testing of the effect of confined concrete on compressive strength and ductility of concrete beam subjected to pure bending are presented. The effect of different stirrups forms and spacing, as well as different concrete strengths, on beam carrying capacity and ductility were analyzed. Ultimate strength capacity and deflection of concrete beam increase with the decrease in stirrups spacing. Stirrup form has a great effect on the ultimate carrying capacity and ductility of concrete beam. Stirrups which confined the region of concrete in the compression more contribute to greater compression strength of concrete than common stirrups at the perimeter of the entire cross-section of the beam.

선체의 최종굽힘 모멘트에 대한 신뢰성 검토 (Reliability Assessment against Ultimate Bending Moment of Ships′ Hull Girder)

  • 이주성;양박달치
    • 대한조선학회논문집
    • /
    • 제29권1호
    • /
    • pp.103-112
    • /
    • 1992
  • 선박의 최종굽힘 모멘트는 설계에 적용되는 주요강도로써 이를 추정하는 여러방법들이 제안되었는데, 판과 보강재로 이루어진 구조요소의 압축 최종강도에 대한 추징에서 시작되는 것이 일반적이다. 본 논문에서는 최종굽힘 모멘트를 구하기 위해 보강판의 압축 강도추정을 지금까지 제안된 여러가지 방법을 정리하여 소개하고, 실선 설계에 적용될 수 있는 유용성 측면에서 검토하였다. 그 결과를 이용하여 3척의 살물선에 대한 신뢰성 해석을 수행하였다. 선박에 작용하는 파랑굽힘 모멘트는 선급규정에 의해 계산하였다. 본 연구의 신뢰성 해석 문제는 안전여유식의 형태가 비선형임을 고려하여 Advanced First-Order Reliability Method를 이용하였다. 몇가지의 해석예로부터 선체구조의 신뢰성 검토측면에서 최종강도 추정방법을 비교하였다.

  • PDF

압축하중을 받는 유공판의 좌굴 및 최종강도 설계식 개발 (Development of Buckling and Compressive Ultimate Strength Formulations for Rectangular Plate with Cutout)

  • 박주신;고재용
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 가을 학술발표회 논문집
    • /
    • pp.237-244
    • /
    • 2004
  • Plate that have cutout inner bottom and girder and floor etc. in hull construction absence is used much, and this is strength in case must be situated, but establish in region that high stress interacts sometimes fatally in region that there is no big problem usually by purpose of weight reduction, a person and change of freight, piping etc.. Because cutout's existence gnaws in this place, and, elastic buckling strength by load causes large effect in ultimate strength. Therefore, perforated plate elastic buckling strength and ultimate strength is one of important design criteria which must examine when decide structural elements size at early structure design step of ship. Therefore, and, reasonable elastic buckling strength about perforated plate need design ultimate strength. Calculated ultimate strength change several aspect ratioes and cutout's dimension, and thickness in this investigation. Used program applied ANSYS F.E.M code based on finite element method.

  • PDF

탄소섬유시트로 보강된 RC보의 해석 및 설계 프로그램 개발 (Analysis and Design Programming of RC Beams Strengthened with Carbon Fiber Sheets)

  • 김성도;김성수
    • 한국철도학회논문집
    • /
    • 제7권4호
    • /
    • pp.319-325
    • /
    • 2004
  • In this study, analysis and design programs of bending of RC beams strengthened with fiber sheets are developed by using Visual Basic Language. The program consists two groups, ultimate strength method and nonlinear flexural analysis method. Ultimate strength method regards concrete compressive stress as a rectangular stress block and do not consider tensile stress of concrete and load-deflection curves. On the other hand, nonlinear flexural analysis considers tensile stress of concrete, load-deflection curves, state of stress distribution and failure strain of strengthening material. Also, the analysis method used in this study regards nonlinear flexural stress as compressive stress of concrete. This program can be a good tool for determining the bending strength of strengthened RC beams and estimating the amount of fiber sheets for practical use.

Axial compressive behavior of partially encased recycled aggregate concrete stub columns after exposure to high temperatures

  • Jiongfeng Liang;Wanjie Zou;Liuhaoxiang Wang;Wei Li
    • Steel and Composite Structures
    • /
    • 제52권2호
    • /
    • pp.121-134
    • /
    • 2024
  • To investigate the compressive behavior of partially encased recycled aggregate concrete (PERAC) stub columns after exposed to elevated temperatures, 22 specimens were tested. The maximum temperature suffered, the replacement ratio of recycled coarse aggregate (RCA), the endurance time and the spacing between links were considered as the main parameters. It was found that the failure mode of post-heated PERAC columns generally matched that of traditional partially encased composite (PEC) columns, but the flange of specimens appeared premature buckling after undergoing the temperature of 400℃ and above. Additionally, the ultimate strength and ductility of the specimens deteriorated with the elevated temperatures and extended heating time. When 400℃< T ≤ 600℃, the strength reduction range is the largest, about 11% ~ 17%. The higher the replacement ratio of RCA, the lower the ultimate strength of specimens. At the temperature of 600℃, the ultimate strength of specimens with the RCA replacement ratio of 50% and 100% is 0.94 and 0.91 times than that of specimens without RCA, respectively. But the specimen with 50% replacement ratio of RCA showed the best ductility performance. And the bearing capacity and ductility of PERAC stub columns were changed for the better due to the application of links. When the RCA replacement ratio is 100%, the ultimate strength of specimens with the link spacing of 100 mm and 50 mm increased 14% and 25% than that of the specimen without links, respectively. Based on the results above, a formula for calculating the ultimate strength of PERAC stub columns after exposure to high temperatures was proposed.

종방향 압축하중을 받는 선체 유공보강판의 최종강도 거동에 관한 연구 (Ultimate Strenth Behaviour for Perforated Stiffened Panels under Longitudinal Compressive Load)

  • 고재용;박주신;이계희
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.592-600
    • /
    • 2005
  • Ship have cutout inner bottom and girder and floor etc. Ship's structure is used much, and structure strength must be situated, but establish new concept when high stress interacts sometimes fatally the area. There is no big problem usually by aim of weight reduction, a person and change of freight, piping etc.. Because cutout's existence grow up in this place, and elastic buckling strength by load causes large effect in ultimate strength. Therefore, stiffened perforated plate considering buckling strength and ultimate strength is one of important design criteria which must examine when decide structural concept at initial design. Therefore, md, reasonable buckling strength about stiffened perforated plate need to ultimate strength limited design . Calculated ultimate strength varied several web height and cutout's dimension, and thickness in this investigated data. Used program(ANSYS) applied F.E.A code based on finite element method

  • PDF

Temperature and humidity effects on behavior of grouts

  • Farzampour, Alireza
    • Advances in concrete construction
    • /
    • 제5권6호
    • /
    • pp.659-669
    • /
    • 2017
  • Grouts compared to other material sources, could be highly sensitive to cold weather conditions, especially when the compressive strength is the matter of concern. Grout as one the substantial residential building material used in retaining walls, rebar fixation, sidewalks is in need of deeper investigation, especially in extreme weather condition. In this article, compressive strength development of four different commercial grouts at three temperatures and two humidity rates are evaluated. This experiment is aimed to assess the grout strength development over time and overall compressive strength when the material is cast at low temperatures. Results represent that reducing the curing temperature about 15 degrees could result in 20% reduction in ultimate strength; however, decreasing the humidity percentage by 50% could lead to 10% reduction in ultimate strength. The maturity test results represented the effect of various temperatures and humidity rates on maturity of the grouts. Additionally, the freeze-thaw cycle's effect on the grouts is conducted to investigate the durability factor. The results show that the lower temperatures could be significantly influential on the behavior of grouts compared to lower humidity rates. It is indicated that the maturity test could not be valid and precise in harsh temperature conditions.