• Title/Summary/Keyword: Ubiquitous joint model

Search Result 16, Processing Time 0.019 seconds

Usefulness and Limiations of Ubiquitous Joint Models (편재절리모델의 유용성과 한계성)

  • ;Ethan M.Dawson
    • Tunnel and Underground Space
    • /
    • v.7 no.3
    • /
    • pp.202-207
    • /
    • 1997
  • Jointed rock is often modeled using ubiquitious joint models, anisotropic plasticity models with yield condions that simulate slip along joint sets. In this paper, a ubiquitous joint model is derived for a rock mass cut by two sets of continuous joints. The model is used to compute the bearing capacity of a footing resting on jointed rock. Comparison to a series of Distinct Element simulations with different joint spacings, suggests that ubiquitous joint modles are only appropriate when the joint spacing is small.

  • PDF

Stability Analysis for Jointed Rock Slope Using Ubiquitous Joint Model (편재절리모델을 이용한 절리 암반 사면의 안정성 해석)

  • 박연준;유광호
    • Tunnel and Underground Space
    • /
    • v.8 no.4
    • /
    • pp.287-295
    • /
    • 1998
  • Limit equilibrium method is widely used for the stability analysis of soil slopes. In jointed rock slopes however, the failure of the slope is largely dependent upon the strength and deformability of the joints in the rock mass and quite often failure occurs along the joints. This paper describes the use of ubiquitous joint model for the stability analysis of the jointed rock slopes. This model is essentially an anisotropic elasto-plastic model and can simulate two sets of joint in arbitrary orientations. Validation of the developed with the factor of safety equal to unity was selected when the shape of the failure plane is assumed log spiral. Then the factor of safety of the rock slope having two perpendicular joint sets was calculated while rotating joint orientations. Rusults were compared with limit equilibrium solutions on soil slopes having equivalent soil properties when plane sliding was assumed. Developed model predicted the factor of safety of jointed rock slope in a reasonable accuracy when joint spacing is sufficiently small.

  • PDF

A Numerical Study on the Estimation of Safety Factor of Tunnels Excavated in Jointed Rock Mass (절리암반 터널의 안전율 평가를 위한 수치 해석적 연구)

  • You, Kwang-Ho;Park, Yeon-Jun;Kang, Yong
    • Tunnel and Underground Space
    • /
    • v.11 no.3
    • /
    • pp.279-288
    • /
    • 2001
  • Jointed rock mass can be analyzed by either continuum model or discontinuum model. Finite element method or finite difference method is mainly used for continuum modelling. Although discontinuum model is very attractive in analyzing the behavior of each block in jointed blocky rock masses, it has shortcomings such that it is difficult to investigate each joint exactly with the present technology and the amount of calculation in computer becomes trio excessive. Moreover, in case of the jointed blocky rock mass which has more than 2 dominant joint sets, it is impossible to model the behavior of each block. Therefore, a model such as ubiquitous joint model theory which assumes the rock mass as a continuum, is required. In the case of tunnels, unlike slopes, it is not easy to obtain safety factor by utilizing analysis method based on limit equilibrium method because it is difficult to assume the shape of failure surface in advance. For this reason, numerical analyses for tunnels have been limited to analyzing stability rather than in calculating the safety factor. In this study, the behavior of a tunnel excavated in jointed rock mass is analyzed numerically by using ubiquitous joint model which can incorporate 2 joint sets and a method to calculate safety factor of the tunnel numerically is presented. To this end, stress reduction technique is adopted.

  • PDF

A Study on Jointed Rock Mass Properties and Analysis Model of Numerical Simulation on Collapsed Slope (붕괴절토사면의 수치해석시 암반물성치 및 해석모델에 대한 고찰)

  • Koo, Ho-Bon;Kim, Seung-Hee;Kim, Seung-Hyun;Lee, Jung-Yeup
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.5
    • /
    • pp.65-78
    • /
    • 2008
  • In case of cut-slopes or shallow-depth tunnels, sliding along with discontinuities or rotation could play a critical role in judging stability. Although numerical analysis is widely used to check the stability of these cut-slopes and shallow-depth tunnels in early design process, common analysis programs are based on continuum model. Performing continuum model analysis regarding discontinuities is possible by reducing overall strength of jointed rock mass. It is also possible by applying ubiquitous joint model to Mohr-Coulomb failure criteria. In numerical analysis of cut-slope, main geotechnical properties such as cohesion, friction angle and elastic modulus can be evaluated by empirical equations. This study tried to compare two main systems, RMR and GSI system by applying them to in-situ hazardous cut-slopes. In addition, this study applied ubiquitous joint model to simulation model with inputs derived by RMR and GSI system to compare with displacements obtained by in-situ monitoring. To sum up, numerical analysis mixed with GSI inputs and ubiquitous joint model proved to provide most reliable results which were similar to actual displacements and their patterns.

Utility Bounds of Joint Congestion and Medium Access Control for CSMA based Wireless Networks

  • Wang, Tao;Yao, Zheng;Zhang, Baoxian;Li, Cheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.1
    • /
    • pp.193-214
    • /
    • 2017
  • In this paper, we study the problem of network utility maximization in a CSMA based multi-hop wireless network. Existing work in this aspect typically adopted continuous time Markov model for performance modelling, which fails to consider the channel conflict impact in actual CSMA networks. To maximize the utility of a CSMA based wireless network with channel conflict, in this paper, we first model its weighted network capacity (i.e., network capacity weighted by link queue length) and then propose a distributed link scheduling algorithm, called CSMA based Maximal-Weight Scheduling (C-MWS), to maximize the weighted network capacity. We derive the upper and lower bounds of network utility based on C-MWS. The derived bounds can help us to tune the C-MWS parameters for C-MWS to work in a distributed wireless network. Simulation results show that the joint optimization based on C-MWS can achieve near-optimal network utility when appropriate algorithm parameters are chosen and also show that the derived utility upper bound is very tight.

DEVELOPMENT OF NUMERICAL MODEL FOR THE VISCO-PLASTIC BEHAVIOUR OF THE JOINTED ROCK MASS REINFORCED BY ROCKBOLTS (록볼트로 보강한 절리암반의 점소성거동에 관한 수치해석 모델 개발)

  • Lee, Yeon-Gyu;Lee, Jeong-In;Jo, Tae-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.09a
    • /
    • pp.149-157
    • /
    • 1994
  • In this study two dimensional visco-plastic finite element model capable of handling the multi-step excavation was developed for investigating the effect of excavation support sequences on the behavior of underground openings in the jointed rock mass. First, the finite element model which is capable of handling the multi-step excavation is developed and verified. And then the model is combined with visco-plastic joint model. Ubiquitous joint pattern was considered in the model and joint properties in cach set were assumed to be indentical. Passive, full-grouted rockbolts were cosidered in the numerical model. The visco-plastic deformations of joints and rockbolts were assumed to be governed by Mohr-Conlomb and von Mises yield criteria, respectively. With the ability of removing elements, the model can simulate the multi-step excavation-suppport sequences. The reliability and applicability of the model to the stability analysis for the underground excavation in pratice was checked by simulating the behavior of underground crude oil storage caverns under construction.

  • PDF

Ground support performance in deep underground mine with large anisotropic deformation using calibrated numerical simulation (case of mine-H)

  • Hu, Bo;Sharifzadeh, Mostafa;Feng, Xia-Ting;Talebi, Roo;Lou, Jin-Fu
    • Geomechanics and Engineering
    • /
    • v.21 no.6
    • /
    • pp.551-564
    • /
    • 2020
  • High-stress and complex geological conditions impose great challenges to maintain excavation stability during deep underground mining. In this research, large anisotropic deformation and its management by support system at a deep underground mine in Western Australia were simulated through three-dimensional finite-difference model. The ubiquitous-joint model was used and calibrated in FLAC3D to reproduce the deformation and failure characteristics of the excavation based on the field monitoring results. After modeling verification, the roles of mining depth also the intercept angle between excavation axis and foliation orientation on the deformation and damage were studied. Based on the results, quantitative relationships between key factors and damage classifications were presented, which can be used as an engineering tool. Subsequently, the performance of support system installation sequences was simulated and compared at four different scenarios. The results show that, first surface support and then reinforcement installation can obtain a better controlling effect. Finally, the influence of bolt spacing and ring spacing were also discussed. The outcomes obtained in this research may play a meaningful reference for facing the challenges in thin-bedded or foliated ground conditions.

A Study on the visco-plastic behavior of the jointed rock mass reinforced by rockbolts during excavation (굴착과정에서 록볼트로 보강된 절리암반의 점소성 거동 분석)

  • 이연구;이정인;조태진
    • Tunnel and Underground Space
    • /
    • v.5 no.2
    • /
    • pp.123-133
    • /
    • 1995
  • A two dimensional visco-plastic finite element model capable of handling the multistep excavaton was developed for investigating the effect of excavation-support sequences on the behaviour of underground openings in the jointed rock mass. Ubiquitous joint pattern was considered in the model and joint properties in each set were assumed to be identical. Passive, fully-grouted rockbolts were considered in the model. Visco-plastic deformations of joints and rockbolts were assumed to be governed by Mohr-Coulomb and von Mises yield criteria, respectively. With the ability of removing elements, the model can von Mises yield criteria, respectively. With the ability of removing elements, the model can simulate the multi-step excavation-support sequences. The reliability of the model to the stability analysis for the underground excavation in practice was checked by simulating the behavior of underground crude oil storage caverns under construction.

  • PDF

Development of a Hand~posture Recognition System Using 3D Hand Model (3차원 손 모델을 이용한 비전 기반 손 모양 인식기의 개발)

  • Jang, Hyo-Young;Bien, Zeung-Nam
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.219-221
    • /
    • 2007
  • Recent changes to ubiquitous computing requires more natural human-computer(HCI) interfaces that provide high information accessibility. Hand-gesture, i.e., gestures performed by one 'or two hands, is emerging as a viable technology to complement or replace conventional HCI technology. This paper deals with hand-posture recognition. Hand-posture database construction is important in hand-posture recognition. Human hand is composed of 27 bones and the movement of each joint is modeled by 23 degrees of freedom. Even for the same hand-posture,. grabbed images may differ depending on user's characteristic and relative position between the hand and cameras. To solve the difficulty in defining hand-postures and construct database effective in size, we present a method using a 3D hand model. Hand joint angles for each hand-posture and corresponding silhouette images from many viewpoints by projecting the model into image planes are used to construct the ?database. The proposed method does not require additional equations to define movement constraints of each joint. Also using the method, it is easy to get images of one hand-posture from many vi.ewpoints and distances. Hence it is possible to construct database more precisely and concretely. The validity of the method is evaluated by applying it to the hand-posture recognition system.

  • PDF

Control Variables of Remote Joint Analysis Realization on the M2M Case

  • Lim, Sung-Ryel;Choi, Bo-Yun;Lee, Hong-Chul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.1
    • /
    • pp.98-115
    • /
    • 2012
  • New trend called ubiquitous leads the recent business by standardization and integration. It should be the main issue how to guarantee the integration and accountability on each business, especially in mission critical system which is mainly supported by M2M (Machine to Machine) control mechanism. This study is from the analysis of digital forensics case study that is from the M2M Sensing Control Mechanism problem of the "Imjin River" case in 2009, where a group of family is swept away to death by water due to M2M control error. The ubiquitous surroundings bring the changes in the field of criminal investigation to real time controls such as M2M systems. The needs of digital forensics on M2M control are increasing on every crime scene but we suffer from the lack of control metrics to get this done efficiently. The court asks for more accurately analyzed results accounting high quality product development design. Investigators in the crime scene need real-time analysis against the crime caused by poor quality of mission critical systems. It seems to be every need of Real-Time-Enterprise, so called ubiquitous society on the case. We try to find the efficiency and productivity in discovering non-functional design defects in M2M convergence products focusing on three metrics in study model with quick implementation. Digital forensics system in present status depends on know-how of each investigator and is hard to expect professional analysis on every field. This study set up a hypothesis "Co-working of professional investigators on each field will qualify Performance and Integrity" especially in mission critical system such as M2M and suggests "Online co-work analysis model" to efficiently detect and prevent mission critical errors in advance. At the conclusion, this study proved the statistical research that was surveyed by digital forensics specialists around M2M crime scene cases with quick implementation of dash board.