• Title/Summary/Keyword: UWB Radar Signal

Search Result 40, Processing Time 0.022 seconds

An impulse radio (IR) radar SoC for through-the-wall human-detection applications

  • Park, Piljae;Kim, Sungdo;Koo, Bontae
    • ETRI Journal
    • /
    • v.42 no.4
    • /
    • pp.480-490
    • /
    • 2020
  • More than 42 000 fires occur nationwide and cause over 2500 casualties every year. There is a lack of specialized equipment, and rescue operations are conducted with a minimal number of apparatuses. Through-the-wall radars (TTWRs) can improve the rescue efficiency, particularly under limited visibility due to smoke, walls, and collapsed debris. To overcome detection challenges and maintain a small-form factor, a TTWR system-on-chip (SoC) and its architecture have been proposed. Additive reception based on coherent clocks and reconfigurability can fulfill the TTWR demands. A clock-based single-chip infrared radar transceiver with embedded control logic is implemented using a 130-nm complementary metal oxide semiconductor. Clock signals drive the radar operation. Signal-to-noise ratio enhancements are achieved using the repetitive coherent clock schemes. The hand-held prototype radar that uses the TTWR SoC operates in real time, allowing seamless data capture, processing, and display of the target information. The prototype is tested under various pseudo-disaster conditions. The test standards and methods, developed along with the system, are also presented.

Performance Improvement of Radar Target Classification Using UWB Measured Signals (광대역 레이다 측정 신호를 이용한 표적 구분 성능 향상)

  • Lee, Seung-Jae;Lee, Sung-Jun;Choi, In-Sik;Park, Kang-Kuk;Kim, Hyo-Tae;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.10
    • /
    • pp.981-989
    • /
    • 2011
  • In this paper, we performed radar target classification for the five scale models using ultra-wideband measured signal. In order to compare the performance, the 2 GHz(2~4 GHz), 4 GHz(2~6 GHz), and 6 GHz(2~8 GHz) bandwidth were used. Short time Fourier transform(STFT) and continuous wavelet transform(CWT) are used for target feature extraction. Extracted feature vectors are used as input for the multi-layerd perceptron(MLP) neural network classifier. The results show that as the bandwidth is wider, the performance is better.

Comparison of Time-Domain Imaging Algorithms for Ultra-Wideband Radar with One-Dimensional Synthetic Aperture (1차원 합성 개구면을 가진 초광대역 레이더의 시영역 기반 영상화 기법 비교)

  • Kim, Dae-Man;Hong, Jin-Young;Kim, Kang-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.10
    • /
    • pp.1175-1184
    • /
    • 2008
  • Delay-sum back projection(DSBP) algorithm and the time reversal algorithm based on the finite-difference time-domain method are compared. The two algorithms, which operate in the time domain, can process the ultra-wideband (UWB) radar data to generate images that are close to the original location and shape of the target. For the experiment, the UWB radar consists of a network analyzer, a resistive V dipole antenna, a scanner, and a control computer. The radar aperture is synthesized by linearly scanning the antenna. A calibration procedure is applied to the measured data to remove signal distortion and clutter. The two algorithms are applied to the same data on the same platform. It is shown that the DSBP algorithm produces better images but takes longer time to produce the images than the FDTD-TR algorithm.

Feasibility Study of Forward-Looking Imaging Radar Applicable to an Unmanned Ground Vehicle (무인 차량 탑재형 전방 관측 영상 레이다 가능성 연구)

  • Sun, Sun-Gu;Cho, Byung-Lae;Park, Gyu-Churl;Nam, Sang-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.11
    • /
    • pp.1285-1294
    • /
    • 2010
  • This study describes the design and verification of short range UWB(Ultra Wideband) imaging radar that is able to display high resolution radar image for front area of a UGV(Unmanned Ground Vehicle). This radar can help a UGV to navigate autonomously as it detects and avoids obstacles through foliage. We describe the relationship between bandwidth of transmitting signal and range resolution. A vivaldi antenna is designed and it's radiation pattern and reflection are measured. It is easy to make array antenna because of small size and thin shape. Aperture size of receiving array antenna is determined by azimuth resolution of radar image. The relation of interval of receiving antenna array, image resolution and aliasing of target on a radar image is analyzed. A vector network analyzer is used to obtain the reflected signal and corner reflectors as targets are positioned at grass field. Applicability of the proposed radar to UGV is proved by analysis of image resolution and penetrating capability for grass in the experiment.

A study on a target-tracking and noncontact type biosignal measurment system Using IR-Radar and Pan-Tilt system (원격 비접촉식 목표 추적형 생체신호측정시스템에 관한 연구)

  • Choi, Kwang-Wook;Kim, Cheol-Sung;Yang, Chul-Seung;Lee, Jeong-Gi
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.9
    • /
    • pp.2237-2242
    • /
    • 2014
  • As Single households increases for reason of communication development, extending human life, there are many problems occuring all over the world. In order to solve this problem with an invasion of privacy and manintain a healthy life, this paper suggest non-contact type bio-signal measurement system using IR-Radar, displacement sensor and Pan-Tilt system. The proposed system can increse the distance of measured respiration from 1m to over 8m, which is comprised of two IR-Radar for location tracking, one displacement sensor for non-contact type bio-signal measurement and one stepping motor drive system. The proposed system is verified through experiments and were confirmed the possibility.

Development of Real-time Blood Pressure Monitoring System using Radio Wave (전파를 이용한 실시간 혈압 모니터링 시스템 개발)

  • Jang, Dong-won;Eom, Sun-Yeong;Choe, Jae-Ik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.308-311
    • /
    • 2015
  • Because worldwide interest in the health is increased, the real-time health monitoring system has been demanded to be more convenient non-contact and precise medical devices than conventional. Therefore we developed the blood pressure monitoring system using UWB(Ultra Wide Band) radio wave which contact to the human body through the radar and continuously collect a movement signal of the blood vessel. Then the collected data including pulse rate, systolic blood pressure, diastolic blood pressure is processed in real time. The system monitors and controls through a program-based embedded LCD(Liquid Crystal Display) using Qt GUI(Graphic User Interface) to be displayed in real time. We implement the system as a embedded system because of reducing the size of the limited resources. Existing PC GUI design mode is used relatively large memory, therefore it requires more CPU(Central Processing Unit) capacity and processing time.

  • PDF

Influence of lossy ground on impulse propagation in time domain for impulse ground penetrating radar (초광대역 임펄스 지반탐사레이더에서 지면의 영향에 따른 임펄스 전파 특성 연구)

  • Kim, Kwan-Ho;Park, Young-Jin;Yoon, Young-Joong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.11
    • /
    • pp.42-47
    • /
    • 2007
  • In this paper, influence of lossy ground and gap variation between lossy ground and UWB antenna on impulse propagation in time domain for impulse ground penetrating radar (GPR) is numerically and experimentally investigated. For this study, a novel planar UWB fat dipole antenna is developed. First, influence of lossy ground and gap variation between lossy ground and UWB antenna is simulated. For verification, a test field of sand and wet clay soil is built and using the developed dipole antenna, transmission behavior is investigated at the test field. With an aid of IDFT (inverse discrete Fourier transform), time domain impulse response for transmission coefficient measured and simulated in frequency domain is obtained. Measurement and simulation show that the frequency of maximum transmission coefficient and transmission coefficient are increased with higher dielectric constant and larger gap distance. In time domain, it is shown that for higher dielectric constant, the amplitude of the received signal in time domain is higher and reflected signals are seriously modified. Also, it is found that variation of gap between antenna and ground surface makes timing of peak value changed.

Development of Effective Analytical Signal Models for Functional Microwave Imaging

  • Baang, Sung-Keun;Kim, Jong-Dae;Lee, Yong-Up;Park, Chan-Young
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.4
    • /
    • pp.471-476
    • /
    • 2007
  • Various active microwave imaging techniques have been developed for cancer detection for past several decades. Both the microwave tomography and the UWB radar techniques, constituting functional microwave imaging systems, use the electrical property contrast between normal tissues and malignancies to detect the latter in an early development stage. Even though promising simulation results have been reported, the understanding of the functional microwave imaging diagnostics has been relied heavily on the complicated numerical results. We present a computationally efficient and physically instructive analytical electromagnetic wave channel models developed for functional microwave imaging system in order to detect especially the breast tumors as early as possible. The channel model covers the propagation factors that have been examined in the previous 2-D models, such as the radial spreading, path loss, partial reflection and transmission of the backscattered electromagnetic waves from the tumor cell. The effects of the system noise and the noise from the inhomogeneity of the tissue to the reconstruction algorithm are modeled as well. The characteristics of the reconstructed images of the tumor using the proposed model are compared with those from the confocal microwave imaging.

Design of 10.525GHz Self-Oscillating Mixer Using P-Core Voltage Controlled Oscillator (P-코어 VCO를 사용한 10.525GHz 자체발진 혼합기의 설계)

  • Lee, Ju-Heun;Chai, Sang-Hoon
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.11
    • /
    • pp.61-68
    • /
    • 2018
  • This paper describes design of a 10.525 GHz self oscillating mixer semiconductor IC chip combining voltage controlled oscillator and frequency mixer using silicon CMOS technology for Doppler radar applications. The p-core type VCO included in the self oscillating mixer minimizes the noise contained in the transmitted signal. This noise minimization increases the sensing distance and acts in a direction favorable to the reaching distance and the sensitivity of the motion detection sensor. Simulation results for phase noise show that a VCO designed as a P-core has a noise characteristic of -106.008 dBc / Hz at 1 MHz offset and -140.735 dBc / Hz at 25 MHz offset compared to a VCO designed with N-core and NP-core showed excellent noise characteristics. If a self-oscillating mixer is implemented using a p-core designed VCO in this study, a motion sensor with excellent range and reach sensitivity will be produced.

Vital Sign Detection in a Noisy Environment by Undesirable Micro-Motion (원하지 않는 작은 동작에 의한 잡음 환경 내 생체신호 탐지 기법)

  • Choi, In-Oh;Kim, Min;Choi, Jea-Ho;Park, Jeong-Ki;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.5
    • /
    • pp.418-426
    • /
    • 2019
  • Recently, many studies on vital sign detection using a radar sensor related to Internet of Things(IoT) smart home systems have been conducted. Because vital signs such as respiration and cardiac rates generally cause micro-motions in the chest or back, the phase of the received echo signal from a target fluctuates according to the micro-motion. Therefore, vital signs are usually detected via spectral analysis of the phase. However, the probability of false alarms in cardiac rate detection increases as a result of various problems in the measurement environment, such as very weak phase fluctuations caused by the cardiac rate. Therefore, this study analyzes the difficulties of vital sign detection and proposes an efficient vital sign detection algorithm consisting of four main stages: 1) phase decomposition, 2) phase differentiation and filtering, 3) vital sign detection, and 4) reduction of the probability of false alarm. Experimental results using impulse-radio ultra-wideband radar show that the proposed algorithm is very efficient in terms of computation and accuracy.