• Title/Summary/Keyword: UWB Radar Signal

Search Result 40, Processing Time 0.026 seconds

Design and Performance Analysis of UWB Modules for Borehole Radar System (시추공 레이더 시스템에 사용되는 UWB 모듈의 설계 및 성능 분석)

  • Cho, Jae-Hyoung;Kim, Sang-Wook;Kim, Se-Yun;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.11
    • /
    • pp.1121-1129
    • /
    • 2009
  • In this paper, the UWB(Ultra-Wide Band) modules such as a pulse generator and the LNA(Low-Noise Amplifier) with AGC(Auto Gain Control) are designed to construct a cross-borehole pulse radar system, of which performance is compared with the existing system. The budget and specification of the radar system are determined by calculating the total path loss of the underground medium including an empty cavity. The pulse generator is fabricated to have the repeatation frequency 40 kHz, the pulse width lower than 5 ns and the peak signal level +73 dBm. The UWB LNA is designed to have the noise figure 3.77 dB, the variable gain range 100 dB and the frequency range of 20 MHz to 200 MHz. Compared with the existing system in an actual test site, the implemented system renders it possible to detect the blind area due to the UWB LNA with low noise figure.

A Novel Signaling Method using Multiple Chirps in UWB Radio (UWB 대역에서 Multiple Chirp 을 이용한 새로운 시그널링 방법)

  • Kim, Yeong-Sam;Yoon, Sang-Hun;Chong, Jong-Wha;Lee, Kyung-Kuk
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.127-128
    • /
    • 2006
  • In this paper, we propose a novel signaling method using chirp signals in UWB radio with satisfaction of FCC regulation. Chirp signals have been used in many ranging systems such as radar because of its good correlation properties. Because it is important to use broader signal bandwidth in order to get higher precision of the ranging, according to the Cramer-Rao Lower Bound, UWB radio is extremely good as the ranging systems. But, it is very difficult to apply existing chirp signals to UWB, because FCC regulates that the systems operating in UWB radio must occupy signal bandwidth more than 500MHz on the condition of stopping the frequency sweeping. So, we propose multiple chirp signals which can satisfy the regulation of FCC while maintaining chirp signal's properties. The multiple chirp signals which are composed of the sub-chirps modulated by sub-carriers can expand the signal bandwidth with the same principle of OFDM systems. The simulation results show that the BER performance of the proposed multiple chirp signals is identical to that of conventional OFDM when it is applied to data communication, and that the correlation properties of the proposed signals are almost the same with properties as those of single chirp signals whose sweeping bandwidth is the same value with the proposed one.

  • PDF

Adaptive CFAR implementation of UWB radar for collision avoidance in swarm drones of time-varying velocities (군집 비행 드론의 충돌 방지를 위한 UWB 레이다의 속도 감응형 CFAR 최적화 연구)

  • Lee, Sae-Mi;Moon, Min-Jeong;Chun, Hyung-Il;Lee, Woo-Kyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.3
    • /
    • pp.456-463
    • /
    • 2021
  • In this paper, Ultra Wide-Band(UWB) radar sensor is employed to detect flying drones and avoid collision in dense clutter environments. UWB signal is preferred when high resolution range measurement is required for moving targets. However, the time varying motion of flying drones may increase clutter noises in return signals and deteriorates the target detection performance, which lead to the performance degradation of anti-collision radars. We adopt a dynamic clutter suppression algorithm to estimate the time-varying distances to the moving drones with enhanced accuracy. A modified Constant False Alarm Rate(CFAR) is developed using an adaptive filter algorithm to suppress clutter while the false detection performance is well maintained. For this purpose, a velocity dependent CFAR algorithm is implemented to eliminate the clutter noise against dynamic target motions. Experiments are performed against flying drones having arbitrary trajectories to verify the performance improvement.

Implementation of Impulse Radar System in Time Domain within Laboratory Unit (시영역에서 임펄스 레이더 시스템의 실험적 구현)

  • Doojin Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.2
    • /
    • pp.93-98
    • /
    • 2024
  • This paper presents the method to extract the ultrawide-band (UWB) signal and proposes the simple impulse radar system for sensing real-based target within close-range area. The proposed impulse radar system consists of impulse generator, ultrawide-band antennas, function generator, and digital oscilloscope. It is verified by experiment that a differentiated Gaussian pulse is generated with 200ps of pulse width and corresponding spectrum from 0.3 to 4.7 GHz once a sinusoidal wave with 10MHz is excited. The Gaussian doublet is received by identical antennas and it is shown that the UWB pule width of 328ps and its spectrum is from 0.9 to 4.4 GHz. It is confirmed that the UWB pulse is extracted when the real-based targets such as circular target with 4cm radius and corner reflector are placed at the close-range area.

Learning-Based People Counting System Using an IR-UWB Radar Sensor (IR-UWB 레이다 센서를 이용한 학습 기반 인원 계수 추정 시스템)

  • Choi, Jae-Ho;Kim, Ji-Eun;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.1
    • /
    • pp.28-37
    • /
    • 2019
  • In this paper, we propose a real-time system for counting people. The proposed system uses an impulse radio ultra-wideband(IR-UWB) radar to estimate the number of people in a given location. The proposed system uses learning-based classification methods to count people more accurately. In other words, a feature vector database is constructed by exploiting the pattern of reflected signals, which depends on the number of people. Subsequently, a classifier is trained using this database. When a newly received signal data is acquired, the system automatically counts people using the pre-trained classifier. We validated the effectiveness of the proposed algorithm by presenting the results of real-time estimation of the number of people changing from 0 to 10 in an indoor environment.

A Study and Design of Beam Scanning Array Antenna using IR-UWB (IR-UWB를 이용한 빔 스캐닝 배열 안테나 설계 및 연구)

  • Kim, Keun-Yong;Kang, Eun-Kyun;Kim, Jin-Woo;Ra, Keuk-Whan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.3
    • /
    • pp.194-201
    • /
    • 2014
  • This paper is able to be solved by improving degradation in multi-path environment by adjust beam pattern angle through modifying pulse phase of each antennas by using TRM (Transmitter Receiver Module). Beam Scanning Array Antenna, which is transmitter/receiver that improves degradation in multi-path environment without any signal distortion, is designed and manufactured. Beam Scanning Array Antenna should be able to send/receive signal at the antenna's longitudinal part without distortion and should not influences other systems. Also, it should include target detecting ability by beam steering.Dispersion characteristic of Beam Scanning Antenna, which is designed, is analysed by using fidelity, and steering and radar resolution performance is verified by using $1cm{\times}1cm$ sized target. To manufacture Beam Scanning Array Antenna, control board and GUI, which is able to control Vivaldi Antenna for IR-UWB, Tri-Band Wilkinson power divider, and TRM (Transmitter Receiver Module), is designed. Throughout this research, developed Beam Scanning UWB Array Antenna system is adoptable for radar application field. and time domain analysis techniques by using network analyser made the antenna characteristics analysis for setting up antenna more accurate. In addition, it makes beam width checking without difficulties.

Optimization Design in Time Domain on Impulse GPIR System (임펄스 GPIR시스템의 시간영역 최적화 설계)

  • Kim, Kwan-Ho;Park, Young-Jin;Yoon, Young-Joong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.3
    • /
    • pp.32-39
    • /
    • 2009
  • In this paper, system optimization design technique of an impulse ground penetrating image radar (GPIR) in time domain is proposed to improve depth resolution of the system. For the purpose, time domain analysis method of key components such as impulse generator and UWB antenna is explained and by simulation, parameters of each component are determined. In particular, by standardizing the impulse signal, spectrum efficiency of a radiated impulse signal is improved and a U-shaped planar dipole antenna for a UWB antenna is developed. By equipping a parabolic metal reflector with the proposed antenna, external noise is prevented and the ability of radiating an input impulse into ground is improved. In addition, to remove ringing effect of the propose antenna which causes serious degradation of the system performance, resistors are loaded at the edge of the antenna and then Tx and Rx UWB antennas are optimized by simulation in time domain. For images of targets buried under the ground migration technique is applied and influence of tough ground surface on distortion of received impulse signals is reduced using technique of noise and signal distortion reduction in time domain and its time resolution is enhanced. To verify the design optimization procedure, a prototype of an GPIR and an artificial test field are made. Measurement results show that the resolution of the system designed is as good as that of a theoretical model.

A Method of ISAR Geometric Calibration for Point Target Using Impulse-Radio UWB (임펄스 초광대역 레이다를 이용한 점표적의 ISAR 기하 보정 방법)

  • Yu, Jiwoong;Nikitin, Konstantin;Paek, Inchan;Jang, Jong Hun;Ka, Min-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.4
    • /
    • pp.397-403
    • /
    • 2015
  • In this paper, a method of ISAR geometric calibration is represented by using impulse-radio UWB radar. The ir-UWB is good for using a signal processing in time domain, so, it does not occur a multi-path or coupling problem. If a signal that between antennas and target is assumed a plane wave, a center of rotation in ISAR geometry model can be estimated by using point target. Before image is reconstructed with sinogram, the center of rotation can be calculated by using least square fitting. This method can be obtained a more contrast image, and a maximum value of entropy of image. The method, that estimates a center of rotation in received data, will be used a initial setup of instruments or a periodic compensation to reconstruct image. It would be useful in medical, security and surveillance imaging equipments that have a fixed geometry.

Detection of Apnea Signal using UWB Radar based on Short-Time-Fourier-Transform (국소 퓨리에 변환 기반 레이더 신호를 활용한 무호흡 검출)

  • Hwang, Chaehwan;Kim, Suyeol;Lee, Deokwoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.151-157
    • /
    • 2019
  • Recently, monitoring respiration of people has been of interest using non-invasive method. Among the vital signals usually used for indicating health status, non-invasive and portable device based monitoring respiratory status is practically useful and enable one to promptly deal with abnormal physical status. This paper proposes the approach to real-time detection of apnea signal based on Short-Time-Fourier-Transform(STFT). Contrary to the analysis of a signal in frequency domain using Fast-Fourier Transform, this paper employs Short-time-Fourier-Transform so that frequency response can be analyzed in short time interval. The respiratory signal is acquired using UWB radar sensor that enables one to obtain respiration signal in contactless way. Detection of respiratory status is carried out by analyzing frequency response, and classification of respiratory status can be provided. In particular, STFT is employed to analyze respiratory signal in real-time, leading to effective analysis of the respiratory status in practice. In the case of existence of noise in the signal, appropriate filtering process is employed as well. The proposed method is straightforward and is workable in practice to analyze the respiratory status of people. To evaluate the proposed method, experimental results are provided.

Algorithm for Air Conditioning Service Based on IR-UWB Sensor (IR-UWB 센서 기반의 에어컨 서비스 알고리즘)

  • Kim, Jong-Min;Kang, Tae-Hyung;Ryu, Gab-Sang
    • Journal of Internet of Things and Convergence
    • /
    • v.7 no.4
    • /
    • pp.1-7
    • /
    • 2021
  • Recently, technological differentiation(sensor, AI) of products using IoT technology to satisfy consumer needs in the mature market for smart home appliances has received a lot of positive responses. However, air conditioner products are in the early stages of convergence technology. Therefore, air conditioner products are fields that require ICT technologies for information production, collection, processing, storage, and service development beyond IoT. In this paper, we collect and store contactless bio-signal using IR-UWB radar technology. The blowing direction of the air conditioning is controlled according to bio-signal and user's sleep is monitored to provide an optimal sleep environment. In addition, we propose a service algorithm that can provide comfort with changes in the optimal conditions of air conditioning and emotional lighting depending on the discomfort index environment. Through this study, we developed an intelligent smart air conditioning service platform with ICT technology of bio-signal, discomfort index, and emotional lighting.