• Title/Summary/Keyword: UWB(Ultra wideband)

Search Result 393, Processing Time 0.031 seconds

The efficient IR-UWB Radar System for Reflective Wave Removal in a Short Distance Environments (근거리 환경에서 반사파 제거를 위한 효율적인 IR-UWB Radar 시스템)

  • Kim, Sueng-Woo;Jeong, Won-Ho;Yeo, Bong-Gu;Kim, Kyung-Seok
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.1
    • /
    • pp.64-71
    • /
    • 2017
  • In this paper, Kalman filter and RRWA algorithm are used to estimate the accurate target in IR-UWB (Impulse-Radio Ultra Wideband) radar system, which enables accurate location recognition of indoors and outdoors with low cost and low power consumption. In the signal reflected by the target, unnecessary signals exist in addition to the target signal. We have tried to remove unnecessary signals and to derive accurate target signals and improve performance. The location of the targets is estimated in real time with one transmitting antenna and one receiving antenna. The Kalman filter was used to remove the background noise and the RRWA algorithm was used to remove the reflected signal. In this paper, we think that it will be useful to study the accurate distance estimation and tracking in future target estimation.

High resolution groud penetrating image radar using an ultra wideband (UWB) impulse waveform (초광대역 임펄스를 이용한 고해상도 지반탐사 이미지 레이더)

  • Park Young-Jin;Kim Kwan-Ho;Lee Won-Tae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.11
    • /
    • pp.101-106
    • /
    • 2005
  • A ground penetrating image radar (GPR) using an ultra wideband (UWB)impulse waveform is developed for non destructive detection of metallic pipelines buried under the ground. Dielectric constant of test field is measured and then a GPR system is designed for better detection up to 1 meter deep. By considering total path loss, volume of complete system, and resolution, upper and lower frequencies are chosen. First, a UWB impulse for the frequency bandwidth of the impulse is chosen with rising time less than 1 ns, and then compact planar UWB dipole antenna suitable for frequency bandwidth of a UWB impulse is designed. Also, to receive reflected signals, a digital storage oscilloscope is used. For measurement, a monostatic technique and a migration technique are used. For visualizing underground targets, simple image processing techniques of A-scan removal and B-scan average removal are applied. The prototype of the system is tested on a test field in wet clay soil and it is shown that the developed system has a good ability in detecting underground metal objects, even small targets of several centimeters.

MB-OFDM UWB modem SoC design (MB-OFDM 방식 UWB 모뎀의 SoC칩 설계)

  • Kim, Do-Hoon;Lee, Hyeon-Seok;Cho, Jin-Woong;Seo, Kyeung-Hak
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.8C
    • /
    • pp.806-813
    • /
    • 2009
  • This paper presents a modem chip design for high-speed wireless communications. Among the high-speed communication technologies, we design the UWB (Ultra-Wideband) modem SoC (System-on-Chip) Chip based on a MB-OFDM scheme which uses wide frequency band and gives low frequency interference to other communication services. The baseband system of the modem SoC chip is designed according to the standard document published by WiMedia. The SoC chip consists of FFT/IFFT (Fast Fourier Transform/Inverse Fast Fourier Transform), transmitter, receiver, symbol synchronizer, frequency offset estimator, Viterbi decoder, and other receiving parts. The chip is designed using 90nm CMOS (Complementary Metal-Oxide-Semiconductor) procedure. The chip size is about 5mm x 5mm and was fab-out in July 20th, 2009.

The efficient Reflective Wave Removal algorithm based on IR-UWB Radar and Real-time Implementation (IR-UWB Radar에 기반한 효율적인 반사파 제거 알고리즘 및 실시간 구현)

  • Kim, Sueng-Woo;Choi, Hong Rak;Jeong, Won-Ho;Kim, Kyung-Seok
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.2
    • /
    • pp.1-10
    • /
    • 2017
  • In this paper we propose three existing reflection removal algorithms and one proposed algorithm to estimate accurate targets in near field using IR-UWB (Impulse-Radio Ultra Wideband) radar. The received signal includes unnecessary reflected wave signals to the target signal. A reflective cancellation algorithm was used to remove unnecessary signals and estimate only the correct target signal. The location of the targets is estimated in real time with one transmitting antenna and one receiving antenna. In order to overcome the disadvantages of the existing three reflection removal algorithms, we propose a new reflection removal algorithm and estimate the most accurate target. Also we used DSP(Digital Signal Processor) to install the external mounting of vehicles. This paper will contribute to the study of the future reflections.

Learning-Based People Counting System Using an IR-UWB Radar Sensor (IR-UWB 레이다 센서를 이용한 학습 기반 인원 계수 추정 시스템)

  • Choi, Jae-Ho;Kim, Ji-Eun;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.1
    • /
    • pp.28-37
    • /
    • 2019
  • In this paper, we propose a real-time system for counting people. The proposed system uses an impulse radio ultra-wideband(IR-UWB) radar to estimate the number of people in a given location. The proposed system uses learning-based classification methods to count people more accurately. In other words, a feature vector database is constructed by exploiting the pattern of reflected signals, which depends on the number of people. Subsequently, a classifier is trained using this database. When a newly received signal data is acquired, the system automatically counts people using the pre-trained classifier. We validated the effectiveness of the proposed algorithm by presenting the results of real-time estimation of the number of people changing from 0 to 10 in an indoor environment.

A Study on the Coherent IR UWB System for Location-Aware in Ubiquitous Environment (유비쿼터스 환경에서 위치인식을 위한 IR UWB 시스템에 관한 연구)

  • Jang, Se-In;Kim, Nam-Sung;Kim, Si-Gwan
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.4
    • /
    • pp.515-522
    • /
    • 2009
  • In this paper, we have investigated the technology of location-aware applicable for ubiquitous environment and considered IEEE 802.15.4a IR UWB of location-aware WPAN specification which is capable of both communication of 1Mbps and wireless localization. We analyzed both system structure and the characteristic of transmission pulse as comprising of the transmitter for wireless localization of IR UWB.

  • PDF

Non-Coherent Ultra-Wideband Ranging Techniques (Non-Coherent UWB 레인징 기술)

  • Choi, Sung-Soo;Kim, Young-Sun;Oh, Hui-Myung;Lee, Won-Tae;Lee, Jae-Jo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2067-2068
    • /
    • 2006
  • 초광대역 (UWB)통신기술을 응용한 다양한 무선측위시스템은 향후, 전기-IT융합 유비쿼터스 전기설비 환경의 센서네트워크에서 중요한 역할로 대두된다. 이러한 UWB기반의 무선측위시스템은 UWB송수신기 자체의 정밀거리산출기능의 정확도 정도에 따라 그 성능이 직접적으로 좌우된다. 본 논문에서는 현재 논의되고 있는 UWB 레인징기술에 대한 소개와 특히 저비용, 저전력 운영이 가능한 단순한 구조를 갖는 비가역성(Non-coherent) UWB 레인징 시스템구조에 대해 새롭게 제안하고자 한다.

  • PDF

Double Binary Turbo Coded Data Transmission of STBC UWB Systems for U-Healthcare Applications

  • Kim, Yoon-Hyun;Kim, Eun-Cheol;Kim, Jin-Young
    • International journal of advanced smart convergence
    • /
    • v.1 no.1
    • /
    • pp.27-33
    • /
    • 2012
  • In this paper, we analyze and simulate performance of space time block coded (STBC) binary pulse amplitude modulation-direct sequence (BPAM-DS) ultra-wideband (UWB) systems with double binary turbo code in indoor environments for various ubiquitous healthcare (u-healthcare) applications. Indoor wireless channel is modeled as a modified Saleh and Valenzuela (SV) model proposed as a UWB indoor channel model by the IEEE 802.15.SG3a in July 2003. In the STBC encoding process, an Alamouti algorithm for real-valued signals is employed because UWB signals have the type of real signal constellation. It is assumed that the transmitter has knowledge about channel state information. From simulation results, it is shown that the STBC scheme does not have an influence on improving bit error probability performance of the BPAM-DS UWB systems. It is also confirmed that the results of this paper can be applicable for u-healthcare applications.

IEEE 802.15.4a IR-UWB System Design for Indoor Ranging and Communications (실내 무선측위/통신을 위한 IEEE 802.15.4a IR-UWB 시스템 설계)

  • Oh, Mi-Kyung;Park, Joo-Ho;Oh, Jung-Yeol;Kil, Min-Su;Kim, Jae-Young
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.4 no.1
    • /
    • pp.16-22
    • /
    • 2009
  • This paper aims at designing an impulse-radio ultra-wideband (IR-UWB) transceiver, especially targeting the IEEE 802.15.4a indoor ranging and communication systems. We first investigate the IEEE 802.15.4a IR-UWB signals and suggest the full-digital transceiver architecture accordingly. Since the wireless systems equipped with the impulse signal have the property of low-duty cycle, i.e., discontinuity in time, while the conventional systems takes the continuous signals, it is required to reconfigure the system design, including link budget. Following brief introduction to our IEEE 802.15.4a IR-UWB system hardware, we finally examine the ranging performance in indoor environments to verify our system design.

  • PDF

Development Based on Signal Processing Platform for Automotive UWB Radar System (차량용 UWB 레이다를 위한 DSP 기반의 신호처리 모듈 플랫폼 개발)

  • Ju, Yeonghwan;Kim, Sang-Dong;Lee, Jong-Hun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.5
    • /
    • pp.319-325
    • /
    • 2011
  • Recently, collision avoidance systems are under development to reduce the traffic accidents and driver comfort for automotive radar. Pulse radar can detect their range and velocities of moving vehicles using range gate and FFT(Fast Fourier Transform) of the doppler frequency. We designed the real time DSP(Digital Signal Processing) based automotive UWB(Ultra Wideband) radar, and implemented DSP to detect the range and velocity within 100ms for real time system of the automotive UWB radar. We also measured the range and velocity of a moving vehicle using designed automotive UWB radar in a real road environment.