• Title/Summary/Keyword: UWA communication

Search Result 22, Processing Time 0.019 seconds

Bit Split Method for Efficient Channel Estimation in UWA Channel (수중 다중경로 채널에서 효과적인 채널추정을 위한 비트 분리 방법)

  • Kim, Min-Hyuk;Park, Tae-Doo;Kim, Chul-Seung;Jung, Ji-Won;Yong, Chun-Seung;Sohn, Kwon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.10
    • /
    • pp.2207-2214
    • /
    • 2010
  • Underwater acoustic(UWA) communication has multipath error because of reflection by sea-level and sea-bottom. The multipath of UWA channel causes signal distortion and error floor. In this paper, we proposed split input bits of channel decoder using method of maximum value, average value, LLR value for optimal estimation. Channel coding method is LDPC(N size=16000) standard in DVB-S2. As shown in simulation results, the performance of LLR value method is better than other methods.

Optimum Turbo Equalization Method based on Layered Space Time Codes in Underwater Communications (MIMO 수중통신에서 최적의 터보 등화 기법)

  • Kim, Tae-Hun;Jung, Ji-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.5
    • /
    • pp.1042-1050
    • /
    • 2014
  • The performance of underwater acoustic(UWA) communication system is sensitive to the Inter-Symbol Interference(ISI) due to delay spread develop of multipath signal propagation. And due to limited frequency using acoustic wave, UWA is a low transmission rate. Thus, it is necessary technique of Space-time code, equalizer and channel code to improve transmission speed and eliminate ISI. In this paper, UWA communication system were analyzed by simulation using these techniques. In the result of simulation, the proposed Turbo Equalization method based on layered Space Time Codes has improved performance compared to conventional UWA communication.

Underwater acoustic communication system using diversity based on ray modeled underwater acoustic channel in Yellow Sea (다이버시티 기법을 이용한 서해에서의 음선 모델기반 수중음향통신 시스템)

  • Kang, Jiwoong;Kim, Hyeonsu;Ahn, Jongmin;Chung, Jaehak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • This paper proposes an adequate UWA (Underwater Acoustic) communication system of underwater communication network in the Yellow Sea. UWA channel is obtained from Bellhop ray tracing method with Yellow Sea environments. Based on this channel, communication parameters for CDMA (Code Division Multiple Access) and SC-FDM (Single Carrier-Frequency Division Multiplexing) using diversity techniques are calculated. In order to prove the proposed methods, BER (Bit Error Rate) and data rate are obtained using computer simulations and the adequate communication system for long rms delay spread and low Eb/No environments is proposed from the simulation.

Design Philosophy of MIMO OFDM system for Underwater Communication (수중 통신 환경을 위한 MIMO-OFDM 시스템 설계)

  • Han, Dong-Keol;Hui, Bing;Chang, Kyung-Hi;Byun, Sung-Hun;Kim, Sea-Moon;Lim, Yong-Kon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.1
    • /
    • pp.22-32
    • /
    • 2011
  • In this paper, we first analyze the differences of underwater acoustic (UWA) orthogonal frequency division multiplexing (OFDM) systems and conventional terrestrial OFDM system, and give a simple introduction of the backgrounds. By considering the real UWA channel environments, the measured channel data is used to generate the UWA channel model and calculate the relative parameters for underwater OFDM systems. Practical least square (LS) based channel estimation with linear interpolation are adopted to obtain the channel state information (CSI) at receiver side. As multi-input multi-output (MIMO) processing techniques, Alamouti code is implemented and evaluated to perform for space time block coding (STBC) and space frequency block coding (SFBC) for UWA OFDM systems with the MIMO configuration of $2{\times}1$, at the same time, $1{\times}2$ maximum ratio combining (MRC) is performed for the purpose of comparison. The simulation results show that, with perfect channel estimation, SFBC failed to work duo to the serious frequency selectivity of UWA channel environments. When the practical channel estimation is applied, in the case of STBC, the proposed 4-column pilot pattern gives better performance about 7dB than SISO system.

The Study of Space-Time Code using Z·F Detection Technique for Underwater Communication Environment (수중 통신 환경에서 Z·F 검출기법을 이용한 시공간 부호화 방식 연구)

  • Park, Tae-doo;Park, Gun-yeol;Jung, Ji-won;Kim, Beom Mu;Jeon, Sung Min;Lee, Seong-Ro
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.405-408
    • /
    • 2013
  • The performance of underwater acoustic(UWA) communication system is sensitive to the Inter-Symbol Interference(ISI) due to delay spread develop of multipath signal propagation. And due to limited frequency using acoustic wave, UWA is a low transmission rate. Thus, it is necessary technique of Space-time code, equalizer and channel code to improve transmission speed and eliminate ISI. In this paper, UWA communication system were analyzed by simulation using these techniques. In the result of simulation, the proposed Space-time code, Turbo code, and Zero forcing techniques is shown that improved performance than conventional UWA communication.

  • PDF

Performance Analysis of LDPC code with Channel Estimation in Underwater Communication (수중통신 채널에서 채널 추정 오차에 따른 LDPC 부호 성능분석)

  • Kim, Nam-Soo;Jung, Ji-Won;Kim, Ki-Man;Seo, Dong-Hoan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.11
    • /
    • pp.2295-2303
    • /
    • 2009
  • Underwater acoustic(UWA) communication has multipath error because of reflection by sea-level and sea-bottom. The multipath of UWA channel causes signal distortion and error floor. In this paper, we proposed the compensation method of multipath effect using the impulse response of the UWA channel and then analysis the performance of channel coding such as LDPC code, concatenate code. Also we analysed the time-delay errors and estimated amplitude errors of estimated channel information and its affection on the performance. As shown in simulation results, the performance of proposed compensation method is better than the performance of conventional method.

Evaluation of Image Transmission for Underwater Acoustic Communication

  • Lee Seung-Woo;Choi Byung-Woong;Shin Chang-Hong;Kim Jeong-Soo;Lee Kyun-Kyung
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.110-113
    • /
    • 2004
  • Underwater acoustic(UWA) communication is one of the most difficult field because of several factors such as multipath propagation, high temporal and spatial variability of channel conditions. Therefore, it is important to model and analyze the characteristics of underwater acoustic channel such as multipath propagation, transmission loss, reverberation, and ambient noise. In this paper, UWA communication channel is modeled with a ray tracing method and applied to image transmission. Quadrature phase shift keying(QPSK) and multichannel decision feedback equalizer(DFE) are utilized as phase-coherent modulation method and equalization technique, respectively. The objective is to improve the performance of vertical sensor array than that of single sensor in the viewpoint of bit error rate(BER), constellation output, and received image quality.

  • PDF

Performance Analysis of UWA Communication System by Diversity in UWA Channel (수중 음향 다중 경로 채널에서 수중 음향 통신 시스템 성능 분석)

  • Lee, Hojun;Kang, Jiwoong;Ahn, Jongmin;Chung, Jaehak
    • The Journal of the Convergence on Culture Technology
    • /
    • v.3 no.4
    • /
    • pp.191-198
    • /
    • 2017
  • In this paper, we compare the transmission performance of Code Division Multiple Access (CDMA) and Orthogonal Frequency Division Multiplexing (OFDM) under long duration multipath channel environments. This paper generates underwater channels through Bellhop based on the underwater environmental data of the west sea. BER performance of CDMA and OFDM are analyzed through various underwater channels based on the channels. Computer simulations result show that CDMA has better performance than OFDM when multipath delay time of underwater channel is shorter than spreading factor (SF). However, OFDM has better BER performance than CDMA as multi-path delay time increases.

Performance Comparison of Image Transmission in Underwater Acoustic Environment (수중 음향 환경에서의 영상 전송 성능 비교분석)

  • Lee, Seung-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.19-29
    • /
    • 2008
  • Underwater acoustic(UWA) communication is one of the most difficult field in terms of severe channel environments such as multipath propagation, high temporal and spatial variability of channel conditions. Therefore, it is important to model and analyze the characteristics of underwater acoustic channel such as multipath propagation, transmission loss, reverberation, and ambient noise. In this paper, UWA communication channel is modeled with a ray tracing method and applied to image transmission. Quadrature phase shift keying(QPSK) and multichannel decision feedback equalizer(DFE) are utilized as phase-coherent modulation method and equalization technique, respectively. The objective is to improve the performance of the image transmission using vertical sensor array instead of single sensor in the viewpoint of bit error rate(BER), constellation diagram, and received image quality.

Filter orthogonal frequency-division multiplexing scheme based on polar code in underwater acoustic communication with non-Gaussian distribution noise

  • Ahmed, Mustafa Sami;Shah, Nor Shahida Mohd;Al-Aboosi, Yasin Yousif;Gismalla, Mohammed S.M.;Abdullah, Mohammad F.L.;Jawhar, Yasir Amer;Balfaqih, Mohammed
    • ETRI Journal
    • /
    • v.43 no.2
    • /
    • pp.184-196
    • /
    • 2021
  • The research domain of underwater communication has garnered much interest among researchers exploring underwater activities. The underwater environment differs from the terrestrial setting. Some of the main challenges in underwater communication are limited bandwidth, low data rate, propagation delay, and high bit error rate (BER). As such, this study assessed the underwater acoustic (UWA) aspect and explored the expression of error performance based on t-distribution noise. Filter orthogonal frequency-division multiplexing refers to a new waveform candidate that has been adopted in UWA, along with turbo and polar codes. The empirical outcomes demonstrated that the noise did not adhere to Gaussian distribution, whereas the simulation results revealed that the filter applied in orthogonal frequency-division multiplexing could significantly suppress out-of-band emission. Additionally, the performance of the turbo code was superior to that of the polar code by 2 dB at BER 10-3.