• 제목/요약/키워드: UVA irradiation

검색결과 67건 처리시간 0.023초

Photoprotective Potential of Anthocyanins Isolated from Acanthopanax divaricatus Var. albeofructus Fruits against UV Irradiation in Human Dermal Fibroblast Cells

  • Lyu, Su-Yun;Park, Won-Bong
    • Biomolecules & Therapeutics
    • /
    • 제20권2호
    • /
    • pp.201-206
    • /
    • 2012
  • Ultraviolet (UV) A penetrates deeply into the skin and induces the generation of reactive oxygen species (ROS) causing damage to fibroblasts, which leads to aging of the skin. However, the body has developed an antioxidant defence system against the harmful effects of ROS. Enzymes such as superoxide dismutase (SOD) and catalase (CAT) play critical roles on the removal of excess ROS in living organisms. In this study, the antioxidant activities of anthocyanins (cyanidin 3-galactoside and cyanidin 3-lathyroside) from Acanthopanax divaricatus var. albeofructus (ADA) fruits were investigated by xylenol orange, thiobarbituric acid reactive substances (TBARS), and antioxidant enzyme assay. As a result, generation of $H_2O_2$ and lipid peroxide induced by UVA-irradiation in human dermal fibroblast (HDF-N) cells was reduced by treatment of anthocyanins. Also, augmented enzyme (SOD and CAT) activities were observed in UVA-irradiated cells when treated with anthocyanin. In conclusion, the results obtained show that anthocyanins from ADA fruits are potential candidates for the protection of fibroblast against the damaging effects of UVA irradiation. Furthermore, anthocyanin may be a good candidate for antioxidant agent development.

3D 피부세포 배양계를 이용한 피부광노화 연구 (Skin photoaging in reconstituted skin culture models)

  • 강상진
    • 대한화장품학회지
    • /
    • 제25권2호
    • /
    • pp.59-75
    • /
    • 1999
  • Skin is continuously exposed to external stimuli including ultraviolet radiation, which is a major cause of skin photoaging. According to recent discoveries, UVA with a lower energy but deep-penetrating properties, compared to UVB, is likely to play a major part in causing skin photoaging. The clinical and histochemical changes of photoaging are well characterized, but the biochemical mechanisms are poorly understood partly due to the lack of suitable experimental systems. In this work, three-dimensional, reconstituted skin culture models were prepared. After certain period of maturation, the equivalent models were shown to be similar in structure and biochemical characteristics to normal skin. Mature dermal and skin equivalent models were exposed to sub-lethal doses of UVA, and the effects of UVA relevant to dermal photoaging were monitored, including the production of elastin, collagen, collagenase(MMP-1), and tissue inhibitor of metalloproteinases-1 (TIMP-1). Interestingly, dermal and skin equivalents reacted differently to acute and chronic exposure to UVA. Elastin production was increased as soon as one week after commencing UVA irradiation by chronic exposure, although a single exposure failed to do so. This early response could be an important advantage of equivalent models in studying elastosis in photoaged skin. Collagenase activity was increased by acute UVA irradiation, but returned to control levels after repeated exposure. On the other hand, collagen biosynthesis, which was increased by a single exposure, decreased slightly during 5 weeks of prolonged UVA exposure. Collagenase has been thought to be responsible for collagen degeneration in dermal photoaging. However, according to the results obtained in this study, elevated collagenase activity is not likely to be responsible for the degeneration of collagen in dermal photoagig, while reduced production of collagen may be the main reason. It can be concluded that reconstituted skin culture models can serve as useful experimental tools for the study of skin photoaging. These culture models are relatively simple to construct, easy to handle, and are reproducible Moreover the changes of dermal photoaging can be observed within 1-4 weeks of exposure to ultraviolet light compared to 4 months to 2 years for human or animal studies. These models will be useful for biochemical and mechanistic studies in a large number of fields including dermatology, toxicology, and pharmacology.

  • PDF

섬유아세포에서 세포 활성 촉진 및 광노화 억제 효능을 보이는 신규 헵타펩타이드 (A Novel Heptapeptide that Promotes Cellular Activity and Inhibits Photoaging in Fibroblasts)

  • 이응지;강한아;황보별;정용지;김은미
    • 대한화장품학회지
    • /
    • 제48권2호
    • /
    • pp.157-167
    • /
    • 2022
  • 본 연구에서는 7 개의 아미노산으로 이루어진 헵타펩타이드의 섬유아세포 활성 증가 및 광노화 조건에서의 세포 손상 억제 효과를 확인하였다. 실험 결과 헵타펩타이드 처리 시 섬유아세포 증식 및 세포외기질(extracellular matrix, ECM) 구성 인자의 발현이 증가되었다. 그리고 자외선 A (ultraviolet A, UVA) 조사에 의해 유도된 광노화조건에서 감소된 세포 생존율이 헵타펩타이드에 의해 증가되었고, UVA 조사에 의해 유도된 세포 사멸, 기질금속단백질분해효소-1(matrix metalloproteinases-1, MMP-1) 발현 및 세포 내 활성산소종(reactive oxygen species, ROS) 수준이 헵타펩타이드에 의해 감소되었다. UVA 조사 시 나타나는 transforming growth factor-β (TGF-β)/smad 기전 억제와 그에 따른 ECM 구성 인자 발현 감소 또한 헵타펩타이드에 의해 회복되었다. 또 다른 광노화 유도 조건으로 heat shock을 주었고 헵타펩타이드를 전 처리 하였을 때 heat shock에 의한 mitogen-activated protein kinase (MAPK) 인산화 및 MMP-1 발현이 억제됨을 확인할 수 있었다. 이 결과를 종합해 볼 때, 본 연구의 헵타펩타이드는 섬유아세포의 활성을 촉진하며, 광노화 유도 모델로 사용된 UVA 조사 및 heat shock 조건에서도 세포 내 ROS 억제 효과를 보여 세포 손상에 대한 회복 및 보호 효과를 나타내는 것으로 보인다. 이러한 진피 보호 효과를 갖는 헵타펩타이드는 향 후 신규 화장품 소재로 응용될 수 있을 것으로 기대된다.

자외선 보호성분이 포함된 헤어오일의 자외선에 대한 모발 보호성능 연구 (UV Protection Effect of Hair Treated with Hair Oils Containing UV Protective Substances)

  • 김수환;박선화;안춘순
    • 한국의류학회지
    • /
    • 제44권6호
    • /
    • pp.1205-1223
    • /
    • 2020
  • This research investigated the protective effect on hair for 3 commercial hair oil products containing UV filters upon UVA and UVB irradiation. Hair tresses each weighing 2 g were prepared from black virgin hair. Hair tresses treated with 0.5 g of hair oil were irradiated by UVA (365 nm) and UVB (302 nm) lamp for up to 600 hours. Color of hair was measured using a spectrocolorimeter, tensile strength and elongation of hair were measured using a biological tensile tester, surface morphology was examined using a scanning electron microscope. Experimental results were analyzed using SPSS statistical software. Hair color and tensile strength were both affected by UVA and UVB irradiation. Significant differences in the color and tensile strength were observed between untreated hair and hair treated with hair oils. Good UV protective effect observed in Oil 2 and Oil 3 was attributable to the type and the combination of UV filters contained in the products.

Mechanism of guanine-specific DNA damage by UVA and its role in photocarcinogenesis and photoaging

  • Kawanishi, Shosuke;Oikawa, Shinji;Hiraku, Yusuke
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.150-153
    • /
    • 2002
  • Solar UV light is a well-known carcinogen. UVA radiation is probably carcinogenic to humans. In addition, recent investigations point to the importance of UVA irradiation in the photoaging. We investigated the mechanism of sequence- specific DNA damage using $\^$32/P-Iabeled DNA fragments in relation to carcinogenesis and aging. Furthermore, we investigated whether UVA accelerates the telomere shortening in human WI-38 fibroblasts. The exposure of double- stranded DNA fragments to 365 nm light in the presence of endogenous sensitizers produced sequence-specific cleavage at the 5' site of 5'-GG-3' and 5'-GGG-3' sequences. In addition, HPLC analysis revealed that sensitizers plus 365 nm light increased the 8-oxodG content of double-stranded DNA. We discuss the mechanisms of guanine-specific DNA damagecaused by excited photosensitizers in relation to carcinogenesis and aging.

  • PDF

Heme Oxygenase Expression in Skin of Hairless Mouse Using Ultraviolet A (320-400 nm) Radiation as an Inducer

  • Munif Allanson;Reeve, Vivienne-E
    • Journal of Photoscience
    • /
    • 제9권3호
    • /
    • pp.33-36
    • /
    • 2002
  • This study describes RT-PCR and in situ hybridisation protocols, and the immunohistochemical detection method that we have developed to detect and localise cells that express HO-1 in the skin. We found that HO-1 mRNA was absent in normal mouse skin, but after UVA irradiation HO-1 mRNA was expressed in the dermal fibroblasts, and strongly in basal epidermal cells. HO-1 protein was also induced strongly in dermal fibroblasts, and also in epidermal cells. In addition, the HO substrate heme was reduced in skin microsome at 72 hrs post UVA (when HO activity is high). At the same time, the HO products bilirubin and iron levels were elevated in the cutaneous tissue. Thus in addition to a dermal response, there appears to be an epidermal HO response to UVA in vivo that may be relevant for immune modulation by UVA radiation.

  • PDF

발효홍삼의 인간진피섬유모세포에서 UVA로 유도한 염증 및 기질단백분해효소 발현 억제 효능 (Ferment Red Ginseng Suppresses the Expression of Matrix Metalloproteinases in UVA-irradiated Human Dermal Fibroblast Cells)

  • 이근현;정승일;이창현;신상우;정한솔
    • 동의생리병리학회지
    • /
    • 제31권2호
    • /
    • pp.105-110
    • /
    • 2017
  • Prolonged exposure to solar ultraviolet A (UVA) radiation has been known to cause premature skin aging (photo-aging). UVA radiation generates ROS thereby induce degenerative changes of skin such as degradation of dermal collagen, elastic fibers. Matrix metalloproteinases (MMPs), the proteolytic enzymes have been implicated as a major player in the development of UVA-induced photo-aging. Many studies have been conducted to block the harmful effects of UV radiation on the skin. Recently, we are interested in the availability of fermented red ginseng (FRG) as natural matrix metalloproteinases inhibitors (MMPIs). The efficacy difference between red ginseng and FRG has been compared. Both RG and FRG have no cytotoxic effects below the concentration of $300{\mu}g/ml$. Human dermal fibroblasts (HDFs) were pretreated with FRG or RG for 24h, followed by irradiation of UVA. Then, we measured the intracellular ROS production and the expression of MMP, $IL-1{\beta}$ at the mRNA level. We also examined the intracellular localization of $NF-{\kappa}B$ and MMP-9 on the FRG or RG treated and UVA-irradiated HDFs. FRG decreased the intracellular ROS production elicited by UVA. In addition, FRG decreased the mRNA expression of MMP-3, MMP-9, and $IL-1{\beta}$ more efficiently than RG. Furthermore, FRG suppressed the nuclear localization of $NF-{\kappa}B$, and the expression of MMP-9. Taken together, our results suggest that FRG is promising agents to prevent UVA-induced photo-aging by suppressing MMP expression and inflammation.

The effect of plant extracts on the activity and the expression of MMPs (matrix metalloprotease) induced by UVA

  • Lee, Dong-hwan;Lee, Bum-chun;Yoon, Eun-jeong;Lee, Kyung-eun;Park, Sung-min;Pyo, Hyeong-bae;Choe, Tae-boo
    • 대한화장품학회:학술대회논문집
    • /
    • 대한화장품학회 2003년도 IFSCC Conference Proceeding Book II
    • /
    • pp.32-43
    • /
    • 2003
  • UV irradiation on a skin brings about the qualitative and quantitative alterations of the extracellular matrix. Repeated-UV irradiation suppressed the synthesis of collagen and activated the expression of the matrix metalloprotease (MMP). In this paper, on the purpose of development of novel anti-aging agents from natural sources, effects of several natural products on in vitro MMP-1 activity and UVA induced MMP-1 synthesis in human dermal fibroblast (HDF) culture were studied. We measured MMP-1 activities by fluorescence assay using gelatin as substrates. As a result, the extract of Dicentra spectabilis, and flower buds of Tussilago farfara showed strong inhibitory effect. Among them, the extract of flower buds of Tussilago fartara and Dicentra spectabilis inhibited MMP-1 activity by 92% and 87% at 0.05% (w/v). And UVA induced MMP-1 expression were analyzed by enzyme-linked immunosorbent assay (ELISA) and gelatin-based zymography in HDF culture. The extract of flower buds of Tussilago farfara and Dicentra spectabilis suppressed the UVA induced expression of MMP-1 by similar level of Vitamin C 200$\mu$M at 0.1% (w/v). These results suggest that the extract of Dicentra spectabilis, and flower buds of Tussilago farfara effectively prevent skin from the UV-induced photoaging. So the extracts are thought to have potential as effective raw materials for anti-aging cosmetics.

  • PDF

흰쥐에서의 Fluoroquinolone계 항균제 농도와 광독성의 상관관계 (Relationship between Concentrations and Phototoxicity of Fluoroquinolones in Mice)

  • 최경업;정지은;김명민
    • Biomolecules & Therapeutics
    • /
    • 제10권4호
    • /
    • pp.274-280
    • /
    • 2002
  • The fluoroquinolones have been reported to cause, although at low frequency, severe phototoxicity which is due to singlet oxygen produced by ultraviolet-A (UVA; 320-400 nm) exposure. The objective of this study was to evaluate the phototoxicity based on plasma and tissue concentrations of commonly prescribed fluoroquinolones; lomefloxacin (LFLX), enoxacin (ENX), ofloxacin (OFLX), and ciprofloxacin (CPFX). The phototoxic potentials were investigated by measuring increments in ear thickness, 24 hrs after these fluoroquinolones were orally administered to Balb/c mice, which they were exposed to UVA 17.5 J/$\textrm{cm}^2$ for 2 hrs following drug administration. The fifty percent ear thickness increment-inducing doses ($ETID_{50}$), determined by single ascending dosing of each fluoroquinolone to mice, were calculated to be 50(LMFX), 250(ENX), 770(OFLX), 1100(CPFX) mg/kg. Post the administration of ETID$_{50}$, drug concentrations in plasma and ear tissue were measured at specified times and phototoxicities were quantified. Both peak plasma ($\mu\textrm{g}$/ml) and ear tissue ($\mu\textrm{g}$/g) concentrations were summarized as follows; 7.3/1.4 for LMFX, 15.0/1.6 for ENX, 90.1/18.4 for OFLX and 87.2/3.7 for CPFX. The degree of photo toxicity was more relevant to plasma concentrations than tissue concentrations. In order to assess the effect of irradiation time after drug administration on phototoxicity, the 2 hr UVA irradiation was given at 0, 1, 2, 3, and 5 hr after administering $ETID_{50}$, respectively and photo toxicities were evaluated. The shorter inteval between dosing and UVA exposure was, the higher risk of phototoxicity was produced.d.

Protective Effect of Resveratrol on the Oxidative Stress-Induced Inhibition of Gap Junctional Intercellular Communication in HaCaT Keratinocytes

  • Lee, Jong-Chan;Lee, Sun-Mee;Kim, Ji-Hyun;Ahn, Soo-Mi;Lee, Byeong-Gon;Chang, Ih-Seoup
    • Biomolecules & Therapeutics
    • /
    • 제11권4호
    • /
    • pp.224-231
    • /
    • 2003
  • The aim of this study was to investigate the effect of resveratrol on the oxidative stress-induced inhibition of gap junctional intercellular communication in HaCaT keratinocytes. Anti-oxidative activity of resveratrol was measured by $\alpha,\alpha$-diphenyl-$\beta$-picrylhydrazyl assay and dichlorodihydrofluorescein diacetate oxidation assay. Gap junctional intercellular communication in HaCaT keratinocytes was assessed using the scrape loading/dye transfer technique. Western blots and reverse transcription-polymerase chain reaction were also analyzed for connexin 43 protein and mRNA expression, respectively. Resveratrol scavenged directly the stable $\alpha,\alpha$-diphenyl-$\beta$-picrylhydrazyl radical over a concentration range of 4 mg/ml ($78.2{\pm}2.7$% of control) to 500 mg/ml ($29.9{\pm}4.2$% of control) and decreased the intracellular reactive oxygen species induced by ultraviolet A (UVA) irradiation ($89.3{\pm}1.1$% of UVA group), ultraviolet B (UVB) irradiation ($70.9{\pm}1.7$% of UVB group) and 12-0-tet-radecanoylphorbol-13-acetate (TPA, $48.3{\pm}1.1$% of TPA group), respectively. UVA irradiation and TPA markedly reduced gap junctional intercellular communication, which was restored by resveratrol. There were no significant differences in the level of connexin 43 protein and mRNA expression among any of the experimental groups. Our data suggests that resveratrol has the protective effect on the oxidative stress-induced inhibition of gap junctional intercellular communication in HaCaT keratinocytes, and this protection is likely due to the scavenging of reactive oxygen species.