• Title/Summary/Keyword: UV-resistant

Search Result 127, Processing Time 0.021 seconds

The Protective Effects of Ganoderma lucidum on the DNA Damage and Mutagenesis (DNA손상 및 돌연변이에 대한 명지버섯의 방어효능)

  • 이길수;공석경;최수영
    • Biomolecules & Therapeutics
    • /
    • v.11 no.2
    • /
    • pp.139-144
    • /
    • 2003
  • Ganoderma lucidum is commonly known as medically potent mushroom, which has been widely used in China and other oriental countries for the treatment of various diseases, including cancer. In this report, we investigated the anti-oxidant and protective effect of Ganodema lucidum extract (GLE) against the DNA damage induced by free radical and U.V. In the assay of cell growth inhibition, the inhibitory cell growth rate induced by hydroxyl radical was dose-dependently decreased by GLE. This results support that GLE has a detoxifying activity against cytotoxicity of hydroxyl radical in E. coli cell. GLE also protected ColE1 plasmid DNA damage in the concentration of 200$\mu\textrm{g}$ per reaction on the DNA fragmentation assay. The nuclear tailing by hydrogen peroxide in single cell gel electrophoresis(SCGE) was decreased by GLE in the concentration of 50$\mu\textrm{g}$/ml. These data indicate that Ganoderma lucidum has an anti-oxidative activity to hydrogen peroxide. The mutation rate after irradiation of U.V. was reduced by 50$\mu\textrm{g}$/ml GLE and total number of Rif (Rifampicin) resistant mutants was decreased in a concentration dependent manner when added the GLE exogenously in a culture media. According to the results, it is likely that GLE has not only an anti-oxidative activity to hydroxyl radical but also an anti-mutagenic activity to U.V. mutagenesis.

Intergeneric protoplast fusion between Gliocladium virens and Trichoderma harzianum (Gliocladium virens 와 Trichoderma harzianum의 속간(屬間) 원형질체융합(原形質體融合))

  • Shin, Pyung-Gyun;Cho, Moo-Je
    • The Korean Journal of Mycology
    • /
    • v.21 no.4
    • /
    • pp.323-331
    • /
    • 1993
  • The protoplast formation and intergeneric protoplast fusion between Gliocladium virens and Trichoderma harzianum were attempted to obtain fusants. Protoplast formation was the most effective when the strains were treated with concentration of 5 mg/ml of Novozyme 234 and Cellulase at $25^{\circ}C$ for 3 hours in phosphate buffer, pH 6.5, supplemented with 0.6 M sorbitol as osmotic stabilizer. Auxotrophic mutants of G. virens G88 did not grow in minimal medium and benomyl resistant T. harzianum T95 from wild types, however, was selected by treatment with UV light as genetic marker to isolate fusants. When the intergeneric protoplast fusion between G. virens G88 and T. harzianum T95 was carried out using 30% PEG 4000 containing 10 mM $CaCl_{2}$, and 50 mM glycine (pH 8.5) as fusogenic agent at $25^{\circ}C$ for 10-15 min, the fusion frequency was $0.8{\times}10^{-4}$. Fusants obtained from intergeneric protoplast fusion were spontaneously segregated into va rious strains by continous culture on complete medium. Several intergeneric hybrids were classified into three types: parent-like hybrids, segregants, and recombinants.

  • PDF

MAP kinase kinase kinase as a positive defense regulator in rice-blast fungus interactions

  • Kim, Jung-A;Jung, Young-Ho;Lee, Joo-Hee;Jwa, Nam-Soo
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2004.10a
    • /
    • pp.48-52
    • /
    • 2004
  • We have found the role of rice mitogen-activated protein kinase kinase kinase (MAPKKK), OsEDR1, as controling hypersensitive response (HR) and increased disease resistance to rice blast fungus Magnaporthe grisea. Generation of transgenic rice plants through introduction of the over-expression construct of OsEDR1 using Agrobacterium-mediated transformation results in lesion mimic phenotype. Up-regulation of defense mechanism was detected through detection of increased transcription level of rice PBZ1 and PR1a. Inoculation of rice blast fungus on the lesion mimic transgenic lines displayed significantly increased resistance. The disease symptoms were arrested like HR responses which are commonly detected in the incompatible interactions. High accumulation of phenolic compounds around developing lesions was detected under UV light. There was variation among transgenic lines on the timing of lesion progression as well as the lesion numbers on the rice leaves. Transgenic lines with few lesions also show increased resistance as well as equal amount of grain yields compared to that of wild type rice cultivar Nipponbare. This is the first report of the MAPKKK as a positive regulator molecule on defense mechanism through inducing HR-like cell death lesion mimic phenotype. The application of OsEDR1 is highly expected for the development of resistant cultivars against rice pathogens.

  • PDF

Purification and Characterization of Antistaphylococcal Substance from Pseudomonas sp. KUH-001

  • Hwang, Se-Young;Lee, So-Hee;Song, Kook-Jong;Kim, Yong-Pil;Kawahara, Kazuyoshi
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.2
    • /
    • pp.111-118
    • /
    • 1998
  • A bacterium producing unique antistaphylococcal substance (ASS) was isolated from soil samples. The isolated strain KUH-001 was identified to belong to Pseudomonas species from the characteristic properties of its fluorescence and cellular 3-hydroxy fatty acid composition, etc. The ASS component was purified by procedures employing activated carbon adsorption, column chromatography with silica gel, preparative TLC and HPLC. This compound could also be purified mainly by repeating of trituration and precipitation with chilled ether. Purified ASS with a m.p. value of $140~142^{\circ}C$ showed marked stability at high temperature (at $121^{\circ}C$ for 10 min) and extreme pHs (in 1N HC1 and 1N NaOH for 1 day) without significant loss of antibiotic activity. From spectral data of UV, IR, NMR, and FAB-MS, the compound was elucidated as 2-heptyl-4-hydroxyquinoline N-oxide (HHQO). Under the conditions employed, HHQO exhibited a narrow antimicrobial spectrum. active particularly against Staphylococcus aureus including the methicillin resistant strain. Moreover, it did not induce resistance, and besides, interacted synergistically with certain antibiotics such as vancomycin or erythromycin.

  • PDF

Synthesis, Characterization and Antimicrobial Activity of Garcinol Capped Silver Nanoparticles

  • Fernando, H.N.;Kumarasinghe, K.G.U.R.;Gunasekara, T.D.C.P.;Wijekoon, H.P.S.K.;Ekanayaka, E.M.A.K.;Rajapaksha, S.P.;Fernando, S.S.N.;Jayaweera, P.M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.11
    • /
    • pp.1841-1851
    • /
    • 2019
  • Garcinol, a well-known medicinal phytochemical, was extracted and isolated from the dried fruit rinds of Garcinia quaesita Pierre. In this study, garcinol has successfully used to reduce silver ions to silver in order to synthesize garcinol-capped silver nanoparticles (G-AgNPs). The formation and the structure of G-AgNPs were confirmed by UV-visible spectroscopy, transmission electron microscopy and Fourier transform infrared spectroscopy. The antimicrobial activity of garcinol and G-AgNPs were investigated by well diffusion assays, broth micro-dilution assays and time-kill kinetics studies against five microbial species, including Staphylococcus aureus (ATCC 25923), Pseudomonas aeruginosa (ATCC 27853), Escherichia coli (ATCC 25922), Candida albicans (ATCC 10231) and clinically isolated methicillin-resistant Staphylococcus aureus (MRSA). The formation of G-AgNPs is a promising novel approach to enhancing the biological activeness of silver nanoparticles, and to increase the water solubility of garcinol which creates a broad range of therapeutic applications.

Encystment of Azotobacter vinelandii

  • Pae, Kyoung-Hoon;So, Jae-Seong
    • The Microorganisms and Industry
    • /
    • v.19 no.4
    • /
    • pp.27-31
    • /
    • 1993
  • Certain bacterial species possess the capability of differentiation through several morphogenetic changes which enable them to adapt to certain internal and external stimuli(Losick and Shapiro 1984). Upon induction, cells of A. vinelandii undergo a morphological process which leads to the production of one cyst per cell (Sadoff, 1975). The cysts are considerably resistant to desiccation, which confers a survival advantages upon the organism(Socolofsky and Wyss 1962). Like other prokaryotic differentiations encystment provides a relatively simple model of cellular differentiation. Like in other differentiating bacteria, vegetative growth can be separated from differentiation. Furthermore, the differentiation cycle can be synchronized by specific inducer. There have been a great deal of morphological and physiological studies on this process. However, the mechanisms used to regulate cell differentiation can be clearly defined by careful genetic analysis of the process. Unfortunately, A. vinelandii has proven to be difficult for genetic analysis (Sadoff 1975). For example, it has been shown that a variety of metabolic mutants of Azotobacter speicies are difficult to isolate after mutagenesis with chemical mutagens or UV irradiation. Nevertheless recent advances in molecular genetics in Azotobacter species, especially in the nitrogen fixation research area, appear to be able to overcome this difficulty (Robinson et al. 1986; Kennedy et al. 1986).

  • PDF

Purification and Physiochemical Characterization of Melanin Pigment from Klebsiella sp. GSK

  • Sajjan, Shrishailnath;Kulkarni, Guruprasad;Yaligara, Veeranagouda;Lee, Kyoung;Karegoudar, T.B.
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.11
    • /
    • pp.1513-1520
    • /
    • 2010
  • A bacterium capable of producing melanin pigment in the presence of L-tyrosine was isolated from a crop field soil sample and identified as Klebsiella sp. GSK based on morphological, biochemical, and 16S rDNA sequencing. The polymerization of this pigment occurs outside the cell wall, which has a granular structure as melanin ghosts. Chemical characterization of the pigment particles showed then to be acid resistant, alkali soluble, and insoluble in most of the organic solvents and water. The pigment got bleached when subjected to the action of oxidants as well as reductants. This pigment was precipitated with $FeCl_3$, ammoniacal silver nitrate, and potassium ferricynide. The pigment showed high absorbance in the UV region and decreased absorbance when shifted towards the visible region. The melanin pigment was further charecterized by FT-IR and EPR spectroscopies. A key enzyme, 4-hydroxyphenylacetic acid hydroxylase, that catalyzes the formation of melanin pigment by hydroxylation of L-tyrosine was detected in this bacterium. Inhibition studies with specific inhibitors, kojic acid and KCN, proved that melanin is synthesized by the DOPA-melanin pathway.

Mutagenesis of Streptomyces kasugaensis for Kasugamycin Production

  • Cho, Hoon;Choi, Du-Bok;Lim, Chae-Kyu
    • Journal of environmental and Sanitary engineering
    • /
    • v.23 no.4
    • /
    • pp.23-29
    • /
    • 2008
  • This study was performed to develop mutant strain using a combination of UV irradiation procedures with protoplast mutagenesis in order to achieve an effective kasugamycin production from Streptomyceskasugaensis. Whenlessthan 1.0g/lof Linoleic acid was used, the cell growth was not inhibited. On the other hand, the cell growth was greatly inhibited when more than 1.6 g/l of linoleic acid was used. Among the various mutant strains, SK-12 was obtained in medium containing 1.6g/l of linoleic acid, showing the highest rate of both cell growth and kasugamycin production. In order to compare kasugamycin production with the SK-12 and the parent strain using soybean oil, cultures were performed in a flask. The production of kasugamycin was increased with the increase time. The maximum kasugamycin concentration was 1.2g/l after 6 days of culture. The product yield from soybean oil was 0.05g/l/g consumed carbon source, which was roughly 5.0 fold higher than the parent strain. These results show that it was effective method for obtaining a mutant resistant to linoleic acid for the effective production of kasugamycin from soybean oil.

Optimization of photo-catalytic degradation of oil refinery wastewater using Box-Behnken design

  • Tetteh, Emmanuel Kweinor;Naidoo, Dushen Bisetty;Rathilal, Sudesh
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.711-717
    • /
    • 2019
  • The application of advanced oxidation for the treatment of oil refinery wastewater under UV radiation by using nanoparticles of titanium dioxide was investigated. Synthetic wastewater prepared from phenol crystals; Power Glide SAE40 motor vehicle oil and water was used. Response surface methodology (RSM) based on the Box-Behnken design was employed to design the experimental runs, optimize and study the interaction effects of the operating parameters including catalyst concentration, run time and airflow rate to maximize the degradation of oil (SOG) and phenol. The analysis of variance and the response models developed were used to evaluate the data obtained at a 95% confidence level. The use of the RSM demonstrated the graphical relationship that exists between individual factors and their interactive effects on the response, as compared to the one factor at time approach. The obtained optimum conditions of photocatalytic degradation are the catalyst concentration of 2 g/L, the run time of 30 min and the airflow rate of 1.04 L/min. Under the optimum conditions, a 68% desirability performance was obtained, representing 81% and 66% of SOG and phenol degradability, respectively. Thus, the hydrocarbon oils were readily degradable, while the phenols were more resistant to photocatalytic degradation.

Purification and preliminary analysis of the ATP-dependent unfoldase HslU from the gram-positive bacterium Staphylococcus aureus

  • Jeong, Soyeon;Ha, Nam-Chul;Kwon, Ae-Ran
    • Biodesign
    • /
    • v.6 no.4
    • /
    • pp.96-99
    • /
    • 2018
  • The gram-positive bacterium Staphylococcus aureus is a common cause of abscesses, sinusitis and food poisoning. The emergence of antibiotic-resistant strains has caused significant clinical issues worldwide. The HslU-HslV complex was first identified as a prokaryotic homolog of eukaryotic proteasomes. HslU is an unfoldase that mediates the unfolding of the substrate proteins, and it works with the protease HslV in the complex. To date, the protein complex has been mostly studied in gram-negative bacteria. In this study, we report the purification and crystallization of the full-length HslU from S. aureus. The crystal diffracted X-rays to a $3.5{\AA}$ resolution, revealing that the crystals belong to space group $P2_1$, with unit cell parameters of a = 166.5, b = 189.6, $c=226.6{\AA}$, and ${\beta}=108.1^{\circ}$. We solved the phage problem by molecular replacement using the structure of HslU from Haemophilus influenzae as a search model. The cell content analysis with this molecular replacement solution revealed that 24 molecules are contained in the asymmetric unit. This structure provides insight into the structural and mechanistic difference of the HslUV complex of gram-positive bacteria.