• Title/Summary/Keyword: UV-polymerization

Search Result 252, Processing Time 0.032 seconds

Preparation and Characterization of Poly(butyl acrylate)/Poly(methyl methacrylate) Composite Latex by Seeded Emulsion Polymerization

  • Ju, In-Ho;Hong, Jin-Ho;Park, Min-Seok;Wu, Jong-Pyo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.131-136
    • /
    • 2002
  • As model waterborne acrylic coatings, mono-dispersed poly(butyl acrylate-methyl methacrylate) copolymer latexes of random copolymer and core/shell type graft copolymer were prepared by seeded multi-staged emulsion polymerization with particle size of $180{\sim}200$ nm using semi-batch type process. Sodium lauryl sulfate and potassium persulfate were used as an emulsifier and an initiator, respectively. The effect of particle texture including core/shell phase ratio, glass transition temperature and crosslinking density, and film forming temperature on the film formation and final properties of film was investigated using SEM, AFM, and UV in this study. The film formation behavior of model latex was traced simultaneously by the weight loss measurement and by the change of tensile properties and UV transmittance during the entire course of film formation. It was found that the increased glass transition temperature and higher crosslinking degree of latex resulted in the delay of the onset of coalescence of particles by interdiffusion during film forming process. This can be explained qualitatively in terms of diffusion rate of polymer chains. However, the change of weight loss during film formation was insensitive to discern each film forming stages-I, II and III.

Preparation of Polymer Thin Films of Pentafluorostyrene via Plasma Polymerization

  • Ahn, C.J.;Yoon, T.H.
    • Journal of Adhesion and Interface
    • /
    • v.7 no.1
    • /
    • pp.23-29
    • /
    • 2006
  • Polymer thin films of pentafluorostyrene (PFS) were prepared by RF plasma (13.56 MHz) polymerization in continuous wave (CW) mode, as a function of plasma power and monomer pressure. Conditions for film preparation were optimized by measuring the solvent resistance of plasma polymer thin films in DMAc, NMP, THF, acetone and chloroform, as well as by evaluating the optical clarity via UV-VIS measurements. Pulsed mode plasma polymerization was also utilized to enhance the optical properties of the films by varying the period of on-time and duty cycle. Finally, the films were subjected to refractive index measurements and analyzed by ${\alpha}$-step, TGA and FT-IR.

  • PDF

Preparation and Characterization of Acrylic Acid Grafted Polypropylene Nonwoven Fabric (아크릴산 그라프트 폴리프로필렌 부직포의 제조와 특성)

  • Kim, Sang-Yool;Na, Choon-Ki
    • Fashion & Textile Research Journal
    • /
    • v.6 no.3
    • /
    • pp.384-392
    • /
    • 2004
  • The purpose of this study is in development of effective filter-type polymer adsorbent for removal of pollutants from wastewater by UV irradiation graft polymerization. Photografting of acrylic acid (AA) on polypropylene (PP) nonwoven fabric using benzophenone (BP) as a photosensitizer was investigated. Inhibition of homopolymerization was achieved by adding various concentrations of $FeSO_4{\cdot}7H_2O$, $CuSO_4{\cdot}5H_2O$ and Mohr's salt. As AA concentration was increased, the degree of grafting was increased as to a specific value and then decreased, and the effect of BP concentration showed the same tendency. It was also found that the degree of grafting increased with reaction time and reaction temperature. Addition of the polyfunctional monomers and $H_2SO_4$ to the grafting system accelerated the photografting. The melting temperature, molecular weight and breaking stress and breaking strain were decreased with the increase in the degree of grafting.

Fabrication of Hybrid Films Using Titanium Chloride and 2,4-hexadiyne-1,6-diol by Molecular Layer Deposition

  • Yun, Gwan-Hyeok;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.418-418
    • /
    • 2012
  • We fabricated a new type of hybrid film using molecular layer deposition (MLD). The MLD is a gas phase process analogous to atomic layer deposition (ALD) and also relies on a saturated surface reaction sequentially which results in the formation of a monolayer in each sequence. In the MLD process, polydiacetylene (PDA) layers were grown by repeated sequential surface reactions of titanium tetrachloride and 2,4-hexadiyne-1,6-diol with ultraviolet (UV) polymerization under a substrate temperature of $100^{\circ}C$. Ellipsometry analysis showed a self-limiting surface reaction process and linear growth of the hybrid films. Polymerization of the hybrid films was confirmed by infrared (IR) spectroscopy and UV-Vis spectroscopy. Composition of the films was confirmed by IR spectroscopy and X-ray photoelectron (XP) spectroscopy. The titanium oxide cross-linked polydiacetylene (TiOPDA) hybrid films exhibited good thermal and mechanical stabilities.

  • PDF

Ceramic Stereolithography: Additive Manufacturing for 3D Complex Ceramic Structures

  • Bae, Chang-Jun;Ramachandran, Arathi;Chung, Kyeongwoon;Park, Sujin
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.6
    • /
    • pp.470-477
    • /
    • 2017
  • Ceramic processing to fabricate 3D complex ceramic structures is crucial for structural, energy, environmental, and biomedical applications. A unique process is ceramic stereolithography, which builds ceramic green objects from CAD files from many thin liquid layers of powder in monomer, which are solidified by polymerization with a UV laser, thereby "writing" the design for each slice. This approach directly writes layers in liquid ceramic suspension and allows one to fabricate ceramic parts and products having more accurate, complex geometries and smooth surfaces. In this paper, both UV curable materials and processes are presented. We focus on the basic material principles associated with free radical polymerization and rheological behavior, cure depth and broadening of cured lines, scattering at ceramic interface and their corresponding simulation. The immediate potentials for ceramic AM to change industry fabrication are also highlighted.

Study on the Chemical Polymerization of Pyrrole in the Presence of Cyclic Poly(oxyethylene)s (환형 폴리옥시에틸렌 존재하의 피롤의 화학적 중합에 관한 연구)

  • 차국찬;김진환;배진영
    • Polymer(Korea)
    • /
    • v.26 no.5
    • /
    • pp.568-574
    • /
    • 2002
  • Inclusion compounds using cyclic poly(oxyethylene)s as host molecules have been used to polymerize pyrrole chemically in aqueous medium. This general synthetic strategy makes it possible to grow rigid aromatic polymers in aqueous medium by chemical oxidation method. It is an easy method to obtain rigid polymers in a very mild manner. Some threaded and water-soluble polypyrroles are obtained, and their characterization is performed by NMR, IR, UV, and MALDI-TOF MS measurements.

Preparation and Characterization of Ophthalmic Hydrophilic Silicone Lens Containing Zinc Oxide and Iron Oxide Nanoparticles

  • Shin, Su-Mi;Sung, A-Young
    • Korean Journal of Materials Research
    • /
    • v.31 no.8
    • /
    • pp.427-432
    • /
    • 2021
  • This study uses silicone monomer, DMA, crosslinking agent EGDMA, and initiator AIBN as a basic combination to prepare hydrogel lenses using fluorine-based perfluoro polyether and iron oxide and zinc oxide nanoparticles as additives. After manufacturing the lens using iron oxide nanoparticles and zinc oxide nanoparticles, the optical, physical properties, and polymerization stability are evaluated to investigate the possibility of application as a functional hydrogel lens material. As a result of this experiment, it is found that the addition of the wetting material containing fluorine changes the surface energy of the produced hydrogel lens, thereby improving the wettability. Also, the addition of iron oxide and zinc oxide nanoparticles satisfies the basic hydrogel ophthalmic lens properties and slightly increases the UV blocking performance; it also increases the tensile strength by improving the durability of the hydrogel lens. The polymerization stability of the nanoparticles evaluated through the eluate test is found to be excellent. Therefore, it is judged that these materials can be used in various conditions as high functional hydrogel lens material.

Curing Behaviors of SEMI-IPN Structure UV-curable Pressure Sensitive Adhesive for Dicing Tape (Semi-IPN 구조를 갖는 다이싱 테이프용 자외선 경화형 점착제의 경화거동)

  • Do, Hyun-Sung;Kim, Hyun-Joong;Shim, Chang-Hoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.127-128
    • /
    • 2005
  • UV-curable pressure sensitive adhesives were prepared by blending acrylic copolymer, copolymerized with butyl acrylate (BA), acrylic acid (AA) and vinyl acetate (VAc) by solution polymerization, triethyl amine (TEA) and trimethylolpropane triacrylate (TMPTA). The PSAs were evaluated by peel strength with varying contents of TMPTA and UV dose, and also glass transition temperature($T_g$) of PSAs were measured. When exposed on UV irradiation, the PSAs showed the decreased peel strength and increased $T_g$. And following UV irradiation, the PSAs did not leave any residue on wafer after peel off PSA.

  • PDF

The Relationship between Structural Denaturation of Antioxidative Enzymes and Their Enzyme Activity due to Repeated Exposure to UV-A (UV-A 반복노출로 인한 항산화효소의 구조변성과 효소활성의 상관관계)

  • Park, Mijung;Yoo, Hyo Jung;Kim, Jong Chan;Kim, So Ra
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.20 no.1
    • /
    • pp.75-81
    • /
    • 2015
  • Purpose: The present study was conducted to investigate whether the changes in structure and activity of antioxidative enzymes, superoxide dismutase(SOD) and catalase(CAT) present in the eyes appeared when they were repeatedly exposed to UV-A, and reveal the correlation of these changes. Methods: Each enzyme solution was prepared from the standardized SOD and CAT, and repeatedly exposed to UV-A of 365 min under the condition of 30 minutes, 1 hour and 2 hours a day over 1, 2, 3, 4 and 5 days. Structural denaturation of SOD and CAT induced by repeat UV-A irradiation was confirmed by the electrophoretic analysis, and their enzyme activity was determined by the colorimetric assay using the proper assay kit. Results: SOD exposed repeatedly to UV-A showed the polymerization pattern through the electrophoretic analysis when it was repeatedly exposed under the condition of at least 1 hour a day however, the change of its activity was found to be less than 12%. On the other hand, CAT repeatedly exposed to UV-A showed reduced size of the electrophoretic band which indicated a structure denaturation and its activity was significantly decreased. In the case of that the repeat exposure time was longer, CAT activity was completely lost even though some enzyme band was shown in the electrphoretic analysis. Conclusions: From these results, it was revealed that the degree and pattern in structural denaturation of antioxidative enzymes differently appeared according to the type of enzyme, and the degree of structural denaturation was not always consistent with the reduction in enzyme activity.