• Title/Summary/Keyword: UV-Transmittance

Search Result 471, Processing Time 0.024 seconds

ZnO nanostructures for e-paper and field emission display applications

  • Sun, X.W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.993-994
    • /
    • 2008
  • Electrochromic (EC) devices are capable of reversibly changing their optical properties upon charge injection and extraction induced by the external voltage. The characteristics of the EC device, such as low power consumption, high coloration efficiency, and memory effects under open circuit status, make them suitable for use in a variety of applications including smart windows and electronic papers. Coloration due to reduction or oxidation of redox chromophores can be used for EC devices (e-paper), but the switching time is slow (second level). Recently, with increasing demand for the low cost, lightweight flat panel display with paper-like readability (electronic paper), an EC display technology based on dye-modified $TiO_2$ nanoparticle electrode was developed. A well known organic dye molecule, viologen, was adsorbed on the surface of a mesoporous $TiO_2$ nanoparticle film to form the EC electrode. On the other hand, ZnO is a wide bandgap II-VI semiconductor which has been applied in many fields such as UV lasers, field effect transistors and transparent conductors. The bandgap of the bulk ZnO is about 3.37 eV, which is close to that of the $TiO_2$ (3.4 eV). As a traditional transparent conductor, ZnO has excellent electron transport properties, even in ZnO nanoparticle films. In the past few years, one-dimension (1D) nanostructures of ZnO have attracted extensive research interest. In particular, 1D ZnO nanowires renders much better electron transportation capability by providing a direct conduction path for electron transport and greatly reducing the number of grain boundaries. These unique advantages make ZnO nanowires a promising matrix electrode for EC dye molecule loading. ZnO nanowires grow vertically from the substrate and form a dense array (Fig. 1). The ZnO nanowires show regular hexagonal cross section and the average diameter of the ZnO nanowires is about 100 nm. The cross-section image of the ZnO nanowires array (Fig. 1) indicates that the length of the ZnO nanowires is about $6\;{\mu}m$. From one on/off cycle of the ZnO EC cell (Fig. 2). We can see that, the switching time of a ZnO nanowire electrode EC cell with an active area of $1\;{\times}\;1\;cm^2$ is 170 ms and 142 ms for coloration and bleaching, respectively. The coloration and bleaching time is faster compared to the $TiO_2$ mesoporous EC devices with both coloration and bleaching time of about 250 ms for a device with an active area of $2.5\;cm^2$. With further optimization, it is possible that the response time can reach ten(s) of millisecond, i.e. capable of displaying video. Fig. 3 shows a prototype with two different transmittance states. It can be seen that good contrast was obtained. The retention was at least a few hours for these prototypes. Being an oxide, ZnO is oxidation resistant, i.e. it is more durable for field emission cathode. ZnO nanotetropods were also applied to realize the first prototype triode field emission device, making use of scattered surface-conduction electrons for field emission (Fig. 4). The device has a high efficiency (field emitted electron to total electron ratio) of about 60%. With this high efficiency, we were able to fabricate some prototype displays (Fig. 5 showing some alphanumerical symbols). ZnO tetrapods have four legs, which guarantees that there is one leg always pointing upward, even using screen printing method to fabricate the cathode.

  • PDF

Fabrication and Characterization of an Antistiction Layer by PECVD (plasma enhanced chemical vapor deposition) for Metal Stamps (PECVD를 이용한 금속 스탬프용 점착방지막 형성과 특성 평가)

  • Cha, Nam-Goo;Park, Chang-Hwa;Cho, Min-Soo;Kim, Kyu-Chae;Park, Jin-Goo;Jeong, Jun-Ho;Lee, Eung-Sug
    • Korean Journal of Materials Research
    • /
    • v.16 no.4
    • /
    • pp.225-230
    • /
    • 2006
  • Nanoimprint lithography (NIL) is a novel method of fabricating nanometer scale patterns. It is a simple process with low cost, high throughput and resolution. NIL creates patterns by mechanical deformation of an imprint resist and physical contact process. The imprint resist is typically a monomer or polymer formulation that is cured by heat or UV light during the imprinting process. Stiction between the resist and the stamp is resulted from this physical contact process. Stiction issue is more important in the stamps including narrow pattern size and wide area. Therefore, the antistiction layer coating is very effective to prevent this problem and ensure successful NIL. In this paper, an antistiction layer was deposited and characterized by PECVD (plasma enhanced chemical vapor deposition) method for metal stamps. Deposition rates of an antistiction layer on Si and Ni substrates were in proportion to deposited time and 3.4 nm/min and 2.5 nm/min, respectively. A 50 nm thick antistiction layer showed 90% relative transmittance at 365 nm wavelength. Contact angle result showed good hydrophobicity over 105 degree. $CF_2$ and $CF_3$ peaks were founded in ATR-FTIR analysis. The thicknesses and the contact angle of a 50 nm thick antistiction film were slightly changed during chemical resistance test using acetone and sulfuric acid. To evaluate the deposited antistiction layer, a 50 nm thick film was coated on a stainless steel stamp made by wet etching process. A PMMA substrate was successfully imprinting without pattern degradations by the stainless steel stamp with an antistiction layer. The test result shows that antistiction layer coating is very effective for NIL.

Effect of Sputtering Powers on Mg and Ga Co-Doped ZnO Thin Films with Transparent Conducting Characteristics (RF 마그네트론 스퍼터를 이용하여 제작한 MGZO 박막의 구조적 및 전기적, 광학적 특성에 미치는 스퍼터링 전력의 영향)

  • Kim, In Young;Shin, Seung Wook;Kim, Min Sung;Yun, Jae Ho;Heo, Gi Seok;Jeong, Chae Hwan;Moon, Jong-Ha;Lee, Jeong Yong;Kim, Jin Hyoek
    • Korean Journal of Materials Research
    • /
    • v.23 no.3
    • /
    • pp.155-160
    • /
    • 2013
  • ZnO thin films co-doped with Mg and Ga (MxGyZzO, x + y + z = 1, x = 0.05, y = 0.02 and z = 0.93) were prepared on glass substrates by RF magnetron sputtering with different sputtering powers ranging from 100W to 200W at a substrate temperature of $350^{\circ}C$. The effects of the sputtering power on the structural, morphological, electrical, and optical properties of MGZO thin films were investigated. The X-ray diffraction patterns showed that all the MGZO thin films were grown as a hexagonal wurtzite phase with the preferred orientation on the c-axis without secondary phases such as MgO, $Ga_2O_3$, or $ZnGa_2O_4$. The intensity of the diffraction peak from the (0002) plane of the MGZO thin films was enhanced as the sputtering power increased. The (0002) peak positions of the MGZO thin films was shifted toward, a high diffraction angle as the sputtering power increased. Cross-sectional field emission scanning electron microscopy images of the MGZO thin films showed that all of these films had a columnar structure and their thickness increased with an increase in the sputtering power. MGZO thin film deposited at the sputtering power of 200W showed the best electrical characteristics in terms of the carrier concentration ($4.71{\times}10^{20}cm^{-3}$), charge carrier mobility ($10.2cm^2V^{-1}s^{-1}$) and a minimum resistivity ($1.3{\times}10^{-3}{\Omega}cm$). A UV-visible spectroscopy assessment showed that the MGZO thin films had high transmittance of more than 80 % in the visible region and that the absorption edges of MGZO thin films were very sharp and shifted toward the higher wavelength side, from 270 nm to 340 nm, with an increase in the sputtering power. The band-gap energy of MGZO thin films was widened from 3.74 eV to 3.92 eV with the change in the sputtering power.

Growth and characteristics of calcite single crystals using polarized device with amorphous calcium carbonate (비정질 탄산칼슘을 애용한 편광소자용 Calcite 단결정의 성장 및 특성평가)

  • Park, Chun-Won
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.3
    • /
    • pp.93-98
    • /
    • 2005
  • The crystal growth of calcite at a low temperature range was carried out by the hydrothermal method using amorphous calcium carbonate which has excellent solubility in water. Amorphous calcium carbonate was prepared by the wet chemical reaction of a stoichiometric mixture of $CaCl_2\;and\;Na_2CO_3$. An important factor was the reaction temperature and time taken in preparation of the amorphous calcium carbonate. From the solubility results calculated by the weight loss method, $NH_4NO_3$ solutions were found to be the most promising solvents to grow calcite single crystals. The hydrothermal conditions for high growth rates of calcite single crystals were as follows: starting material: amorphous calcium carbonate, solvent: 0.01 m $NH_4NO_3$, temperature: $180^{\circ}C$, duration: 30 days. And properties of calcite single crystals were follows: dislocation density: $10^6{\sim}10cm^{-2}$, UV-visible transmittance: about 80% from 190 to 400 nm and birefringence: $0.17{\sim}0.18$. Also, it can be known from the FT-IR results that the absorption peak by injection of $HCO_3^-\;and\;OH^-$ ions was not shown.

Effects of Annealing Condition on Properties of ITO Thin Films Deposited on Soda Lime Glass having Barrier Layers (Barrier층을 갖는 Soda lime glass 기판위에 증착된 ITO박막의 Annealing 조건에 따른 영향)

  • Lee, Jung-Min;Choi, Byung-Hyun;Ji, Mi-Jung;Park, Jung-Ho;Ju, Byeong-Kwon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.66-66
    • /
    • 2008
  • Most of the properties of ITO films depend on their substrate nature, deposition techniques and ITO film composition. For the display panel application, it is normally deposited on the glass substrate which has high strain point (>575 degree) and must be deposited at a temperature higher than $250^{\circ}C$ and then annealed at a temperature higher than $300^{\circ}C$ in order to high optical transmittance in the visible region, low reactivity and chemical duration. But the high strain point glass (HSPG) used as FPDs is blocking popularization of large sizes FPDs because it is more expensive than a soda lime glass (SLG). If the SLG could be used as substrate for FPDs, then diffusion of Na ion from the substrate occurs into the ITO films during annealing or heat treatment on manufacturing process and it affects the properties. Therefore proper care should be followed to minimize Na ion diffusion. In this study, we investigate the electrical, optical and structural properties of ITO films deposited on the SLG and the Asahi glass(PD200) substrate by rf magnetron sputtering using a ceramic target ($In_2O_3:SnO_2$, 90:10wt.%). These films were annealed in $N_2$ and air atmosphere at $400^{\circ}C$ for 20min, 1hr, and 2hrs. ITO films deposited on the SLG show a high electrical resistivity and structural defect as compared with those deposited on the PD200 due to the Na ion from the SLG on diffuse to the ITO film by annealing. However these properties can be improved by introducing a barrier layer of $SiO_2$ or $Al_2O_3$ between ITO film and the SLG substrate. The characteristics of films were examined by the 4-point probe, FE-SEM, UV-VIS spectrometer, and X-ray diffraction. SIMS analysis confirmed that barrier layer inhibited Na ion diffusion from the SLG.

  • PDF

$TiO_2$ Thin Film Patterning on Modified Silicon Surfaces by MOCVD and Microcontact Printing Method

  • 강병창;이종현;정덕영;이순보;부진효
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.77-77
    • /
    • 2000
  • Titanium oxide (TiO2) thin films have valuable properties such as a high refractive index, excellent transmittance in the visible and near-IR frequency, and high chemical stability. Therefore it is extensively used in anti-reflection coating, sensor, and photocatalysis as electrical and optical applications. Specially, TiO2 have a high dielectric constant of 180 along the c axis and 90 along the a axis, so it is highlighted in fabricating dielectric capacitors in micro electronic devices. A variety of methods have been used to produce patterned self-assembled monolayers (SAMs), including microcontact printing ($\mu$CP), UV-photolithotgraphy, e-beam lithography, scanned-probe based micro-machining, and atom-lithography. Above all, thin film fabrication on $\mu$CP modified surface is a potentially low-cost, high-throughput method, because it does not require expensive photolithographic equipment, and it produce micrometer scale patterns in thin film materials. The patterned SAMs were used as thin resists, to transfer patterns onto thin films either by chemical etching or by selective deposition. In this study, we deposited TiO2 thin films on Si (1000 substrateds using titanium (IV) isopropoxide ([Ti(O(C3H7)4)] ; TIP as a single molecular precursor at deposition temperature in the range of 300-$700^{\circ}C$ without any carrier and bubbler gas. Crack-free, highly oriented TiO2 polycrystalline thin films with anatase phase and stoichimetric ratio of Ti and O were successfully deposited on Si(100) at temperature as low as 50$0^{\circ}C$. XRD and TED data showed that below 50$0^{\circ}C$, the TiO2 thin films were dominantly grown on Si(100) surfaces in the [211] direction, whereas with increasing the deposition temperature to $700^{\circ}C$, the main films growth direction was changed to be [200]. Two distinct growth behaviors were observed from the Arhenius plots. In addition to deposition of THe TiO2 thin films on Si(100) substrates, patterning of TiO2 thin films was also performed at grown temperature in the range of 300-50$0^{\circ}C$ by MOCVD onto the Si(100) substrates of which surface was modified by organic thin film template. The organic thin film of SAm is obtained by the $\mu$CP method. Alpha-step profile and optical microscope images showed that the boundaries between SAMs areas and selectively deposited TiO2 thin film areas are very definite and sharp. Capacitance - Voltage measurements made on TiO2 films gave a dielectric constant of 29, suggesting a possibility of electronic material applications.

  • PDF

Effect of Light Transmission on Composition and Somatic Cell count of Raw Milk (분광된 빛의 주사가 원유내 성분에 미치는 영향)

  • Ko, Han-Jong;Kim, Ki-Youn;Min, Young-Bong;Nishizu, Takahisa;Yun, Yong-Chul;Kim, Hyeon-Tae
    • Journal of agriculture & life science
    • /
    • v.46 no.1
    • /
    • pp.189-194
    • /
    • 2012
  • Measurement of compositions and somatic cells in raw milk by chemical methods usually requires a lot of time, skilled labor and expensive analytical equipments. Recently, near-infrared reflectance spectroscopy (NIRS), which is a rapid, cost-effective and non-destructive technique, has been extensively used for safety and quality evaluation in the field of dairy products. However, less study has been performed to evaluate the effect of transmitted light on milk quality during NIRS analysis. Therefore, the objective of this study was to analyze the changes in milk quality using transmitted light. Raw milk samples collected from dairy farm from Siga prefecture in Japan were analyzed for fat, protein, lactose, solids not fat, total solids, milk urea and citric acid using the Milko scan 4000. Somatic cells in raw milk samples were counted by the Fossomatic 5000. Transmittance spectra of 50 ml raw milk samples were obtained by the Lax-Cute lighter in the 400 nm or less, 689 nm, 773 nm, 900 nm and 979 nm. As a result, milk fat as well as somatic cell count was increased by 2.6% and 9.0%, respectively. The other compositions were, however, changed within the relative error of the measurement. Further studies are needed to apply raw milk quality evaluation using the UV band by accumulating more samples and more data.

A Study on the Vanadium Oxide Thin Films as Cathode for Lithium Ion Battery Deposited by RF Magnetron Sputtering (RF 마그네트론 스퍼터링으로 증착된 리튬 이온 이차전지 양극용 바나듐 옥사이드 박막에 관한 연구)

  • Jang, Ki-June;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.80-85
    • /
    • 2019
  • Vanadium dioxide is a well-known metal-insulator phase transition material. Lots of researches of vanadium redox flow batteries have been researched as large scale energy storage system. In this study, vanadium oxide($VO_x$) thin films were applied to cathode for lithium ion battery. The $VO_x$ thin films were deposited on Si substrate($SiO_2$ layer of 300 nm thickness was formed on Si wafer via thermal oxidation process), quartz substrate by RF magnetron sputter system for 60 minutes at $500^{\circ}C$ with different RF powers. The surface morphology of as-deposited $VO_x$ thin films was characterized by field-emission scanning electron microscopy. The crystallographic property was confirmed by Raman spectroscopy. The optical properties were characterized by UV-visible spectrophotometer. The coin cell lithium-ion battery of CR2032 was fabricated with cathode material of $VO_x$ thin films on Cu foil. Electrochemical property of the coin cell was investigated by electrochemical analyzer. As the results, as increased of RF power, grain size of as-deposited $VO_x$ thin films was increased. As-deposited thin films exhibit $VO_2$ phase with RF power of 200 W above. The transmittance of as-deposited $VO_x$ films exhibits different values for different crystalline phase. The cyclic performance of $VO_x$ films exhibits higher values for large surface area and mixed crystalline phase.

A Study on the Solubilizing and Emulsifying Action of Tocopheryl Acetate using Plant Surfactant (식물성계면활성제를 사용한 토코페릴아세테이트의 가용화와 유화력에 관한 연구)

  • Kim, In-Young;Bae, Bo-Hyeon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.893-905
    • /
    • 2020
  • This study is a study on solubilization and emulsifying power of tocopheryl acetate using vegetable surfactants. High purity polyglyceryl-10 isostearate and polyglyceryl-10 oleate were mixed to synthesize a vegetable surfactant with excellent solubilizing power and emulsifying power. The mixed raw material was named Solubil EWG-1100. The appearance of this raw material was a pale yellowish paste with a specific smell, specific gravity of 1.12, and acid value of 0.085. The HLB value of this surfactant was calculated by the Griffin's equation with an average value of 15.17. The behavior of this surfactant to solubilize tocopheryl acetate was mechanically verified. The performance of solubilization was evaluated by a method of visual evaluation and was measured by a transmittance rate at 650 nm using a UV spectrophotometer. As a result, in the formulation using 3% ethanol as a co-solvent, the concentration of surfactant was required to solubilize tocopheryl acetate was required about 5 times of natural surfactant. In the formulation without ethanol as a co-solvent, the concentration of surfactant was required to solubilize tocopheryl acetate required about 7 times of natural surfactant. In addition, the concentration of surfactant required to make an emulsifivation 10 % of tocopheryl acetate was 1 wt% of Solubil EWG-1100, and the emulsified particle size was 3.5 mm in cream formula. In order to obtain stable and fine emulsified particles, it was found that as the concentration of tocopheryl acetate increased, the concentration of Solubil EWG-1100 also was to increase. As a result of testing the solubilizing power of the surfactant according to the pH various change, it showed stable solubilizing power in the acidic region of pH=3.2, the neutral region of pH=7.0, and the alkaline region of pH=11.8. As application, based on these results, it is expected that it can be widely applied to the cosmetics field that develops skin care prescriptions, sensitive skin products, and heavy dry skin products.

Growth of $LiTaO_3$ and Fe doped-LiTaO3 single crystal as holographic storage material (홀로그래피 소자재료 $LiTaO_3$단결정 성장)

  • 김병국;윤종규
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.2
    • /
    • pp.193-204
    • /
    • 1998
  • The single crystal of the $LiTaO_3$has large electro-optic effects, so it is applied to optical switch, acousto-optic deflector, and optical memory device as hologram using photorefractive effect. In this study, optic-grade undoped $LiTaO_3$and Fe:LiTaO$LiTaO_3$single crystals were grown by the Czochralski method and optical transmission and absorption spectrums were measured in the wavelength of UV-VIS range. The curie temperature was determined with DSC and by measuring capacitance for the grown undoped crystal and ceramic powder samples of various Li/Ta ratio. In case of having a 48.6 mol% $Li_2O$ as a starting Li/Ta ratio, the results of concentration variations were below 0.01 mol% $Li_2O$ all over the crystal, so it was confirmed that $LiTaO_3$single crystals were grown under congruent melting composition having optical homogeneity. The curie temperature of the Fe:$LiTaO_3$crystal was increased with increased with increased doped Fe concentrations;by the ratio of $7.5^{\circ}C$ increase per Fe 0.1 wt%. Also, the optical transmittance was about 78 %, which was sufficient for optical device.

  • PDF