• Title/Summary/Keyword: UV-LED

Search Result 331, Processing Time 0.03 seconds

Development of Stereolithography Apparatus by using UV-LED (UV-LED를 이용한 광조형 장치 개발)

  • Yun, Hae-Yong;Ko, Tae-Jo;Kim, Ho-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.2
    • /
    • pp.15-20
    • /
    • 2014
  • The stereolithography(SL) process is a type of fabrication technology which relies on photopolymerization. It has a relatively simple fabrication process and a resolution of several tens of ${\mu}m$. Recently, SL technology has been applied to various areas, such as bioengineering and MEMS devices, due to the development of advanced materials. This technologycan be divided intothe scanning(SSL) and projection (PSL) types. In this paper, in stereolithography, parts are fabricated by curing photopolymeric resins with light. The application of stereolithography can now include fabricated parts. This process, called stereolithography, can fabricate parts by taking into account theirdegrees of geometry complexity. In particular, UV-LED stereolithography can perform quite rapid fabrication in which specific cross-sections are cured upon exposure to light.

Blue-Light Hazards of 405 nm Sterilization LED Lamps (405 nm 살균용 UV LED 등기구의 청색광 위해에 관한 연구)

  • Hyeon-seok Heo;Chung-hyeok Kim;Ki-ho Nam;Jin-sa Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.3
    • /
    • pp.266-274
    • /
    • 2023
  • Recently, sterilization technology has received increasing interest due to the COVID-19 pandemic and required safety precautions. Particularly, sterilization devices using near ultraviolet (UV) with a 405 nm wavelength are also drawing attention. It has a UV-C wavelength and other sterilization effects. Its blue-colored light on the boundary between UV and visible light is used as a light-emitting diode (LED) lamp for 405 nm sterilization, owing to its longer wavelengths than UV rays. However, the 405 nm wavelength contains blue light that can damage the eyes and skin during prolonged exposures and affect the emotional and biological parts of the body. Currently, 405 nm sterilization LED light registers are circulating in the market. However, they have not undergone safety tests for blue-light hazards. Thus, with the active distribution of sterilization LED lights, solid safety standards and management systems are essential to protect users from blue-light hazards. Accordingly, in this study, we conducted spectral radiance and spectral radiative luminance tests on 405 nm sterilization LED registers available in the market by the measurement criteria of IEC 62471. Safety standards must be established to secure users' safety against blue light hazards at a time when 405nm sterilization LED lights are actively distributed due to COVID-19.

Photocatalytic Oxidation of Arsenite Using Goethite and UV LED (침철석과 자외선 LED를 이용한 아비산염의 광촉매 산화)

  • Jeon, Ji-Hun;Kim, Seong-Hee;Lee, Sang-Woo;Kim, Soon-Oh
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.1
    • /
    • pp.9-18
    • /
    • 2017
  • Arsenic (As) has been considered as the most toxic one among various hazardous materials and As contamination can be caused naturally and anthropogenically. Major forms of arsenic in groundwater are arsenite [(As(III)] and/or arsenate [(As(V)], depending on redox condition: arsenite and arsenate are predominant in reduced and oxidized environments, respectively. Because arsenite is much more toxic and mobile than arsenate, there have been a number of studies on the reduction of its toxicity through oxidation of As(III) to As(V). This study was initiated to develop photocatalytic oxidation process for treatment of groundwater contaminated with arsenite. The performance of two types of light sources (UV lamp and UV LED) was compared and the feasibility of goethite as a photocatalyst was evaluated. The highest removal efficiency of the process was achieved at a goethite dose of 0.05 g/L. Based on the comparison of oxidation efficiencies of arsenite between two light sources, the apparent performance of UV LED was inferior to that of UV lamp. However, when the results were appraised on the basis of their emitting UV irradiation, the higher performance was achieved by UV LED than by UV lamp. This study demonstrates that environmentally friendly process of goethite-catalytic photo-oxidation without any addition of foreign catalyst is feasible for the reduction of arsenite in groundwater containing naturally-occurring goethite. In addition, this study confirms that UV LED can be used in the photo-oxidation of arsenite as an alternative light source of UV lamp to remedy the drawbacks of UV lamp, such as long stabilization time, high electrical power consumption, short lifespan, and high heat output requiring large cooling facilities.

Luminescent Properties of strontium aluminate phosphor (Strontium aluminate 형광체의 발광특성연구)

  • 한상혁;김영진
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.185-185
    • /
    • 2003
  • 백색 LED를 실현하는 방법의 하나로 UV LED와 적, 녹, 청의 3색 형광체를 이용하는 방법이 주목받고 있다. 이것은 연색성과 색온도 제어 특성이 뛰어나다. 그러나 기존의 형광체는 단파장, 약 250nm 전후, 에서 여기되는 특성을 갖고 있기 때문에 near UV(nUV), 약 380-410nm, 의 LED에 응용하기에는 발광특성에 문제점을 갖고 있다. 본 연구에서는 nUV 여기가 가능한 strontium aluminate를 flux를 이용한 고상반응법으로 합성하고 발광 특성을 분석하였다. SrO와 A1$_2$ $O_3$의 조합비와 반응조건에 따라서 SrA1$_2$ $O_4$ 흑은 Sr$_4$Al$_{14}$ $O_{25}$ 가 합성되었고, 이들은 도핑과 함께 각각 약 520nm에서의 녹색발광과 약 480nm에서의 청녹색 발광 특성을 보이고 있었다. 도펀트로는 Eu, Dy, Ce, Pr 등이 단독 혹은 혼합되어 첨가되었고, 종류와 양에 따라서 발광 파장의 이동이 관찰 되었고, 강도도 이것에 크게 의존하고 있었다. 또한 발광강도는 여기 파장에도 의존하고 있었으며, 약 350-390nm의 nUV에서 가장 높은 발광강도가 관찰되었다.다.

  • PDF

Air Purification System Using Combined Wavelengths of Ultraviolet Light Sources (자외선 광원의 복합 파장을 이용한 실내 공기정화 장치)

  • Youm, Sungkwan;Park, Junseok;Shin, Kwang-Seong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.567-568
    • /
    • 2021
  • In this paper, we design, fabricate, and test the performance of a cabin filter with LED modules of composite wavelengths containing UV-A and UV-C. Germs and air farms of the manufactured cabin filter confirmed sterilization capability in the sterilization test, and special chambers were manufactured to verify organic material decomposition capability in the organic compound decomposition test. Using colkates as photocatalytic was proved to be superior to using metal mash. The sterilization and air purification capabilities of the cabin filter produced throughout this study were verified through a similar environmental test.

  • PDF

Bactericidal Effect of a 275-nm UV-C LED Sterilizer for Escalator Handrails: Optimization of Optical Structure and Evaluation of Sterilization of Six Bacterial Strains

  • Kim, Jong-Oh;Jeong, Geum-Jae;Son, Eun-Ik;Jo, Du-Min;Kim, Myung-Sub;Chun, Dong-Hae;Kim, Young-Mog;Ryu, Uh-Chan
    • Current Optics and Photonics
    • /
    • v.6 no.2
    • /
    • pp.202-211
    • /
    • 2022
  • In the pasteurization of escalator handrails using ultraviolet (UV) sterilizers, a combination of light distribution and escalator speed has priority over other important factors. Furthermore, since part of the escalator handrail has a curved structure, proper design is needed to improve the sterilization rate on the surfaces touched by users. In this paper, two types of sterilizers satisfying these conditions are manufactured with 275-nm UV-C LEDs, after modeling the three-dimensional (3D) structure of an escalator handrail and simulating optical distributions of UV-C irradiation on the handrail's surface according to light-emitting diode (LED) positions and reflector variations in the sterilizers. Pasteurization experiments with the UV-C LED sterilizers are conducted on six types of gram-positive and gram-negative bacteria, with exposure times of 0.2, 5, and 15 s at an actual installation distance of 20 mm. The sterilization rates for the gram-positive bacteria are 10.63% to 27.94% at 0.2 s, 89.44% to 96.30% at 5 s, and 99.64% to 99.88% at 15 s. Those for the gram-negative bacteria are 57.70% to 77.63% at 0.2 s, 98.90% to 99.49% at 5 s, and 99.88% to 99.99% at 15 s. The power consumption of the UV-C LED sterilizer is about 8 W, which can be supplied by a self-generation module instead of an external power supply.

Real-time Spectroscopic Methods for Analysis of Organic Compounds in Water

  • Kim, Chihoon;Ji, Taeksoo
    • Current Optics and Photonics
    • /
    • v.3 no.4
    • /
    • pp.336-341
    • /
    • 2019
  • This paper proposes an optical system where the organic compound content in water is determined by using an ultraviolet (UV) LED (280 nm) and photodetector. The results obtained by the proposed prototype LED spectroscopy system, which includes a single photodetector and two parallel sample holders, are calculated by applying partial least square regression; the values are highly correlated with the actual concentrations of potassium hydrogen phthalate solutions, with an adjusted coefficient of determination about 0.996. Moreover, the total organic carbon values derived from the UV-Vis spectrometer of real samples (lake, river and sea water) differed little from those obtained by the LED spectroscopy. We confirm that the fast, sensitive, and compact LED sensor system can be readily configured for real-time monitoring of organic compounds in water.

Effect of Pre-harvest Irradiation of UV-A and UV-B LED in Ginsenosides Content of Ginseng Sprouts (새싹 인삼의 수확 전 UV-A 및 -B LED의 조사에 의한 진세노사이드의 영향)

  • Jang, Seong-Nam;Lee, Ga-Oun;Sim, Han-Sol;Bae, Jin-Su;Lee, Ae-Ryeon;Cho, Du-Yong;Cho, Kye-Man;Son, Ki-Ho
    • Journal of Bio-Environment Control
    • /
    • v.31 no.1
    • /
    • pp.28-34
    • /
    • 2022
  • This study was conducted to determine the changes in ginsenosides content according to additional UV-A, and UV-B LED irradiation before harvesting the ginseng sprouts. One-year-old ginseng seedlings (n=100) were transplanted in a tray containing a ginseng medium. The ginseng sprouts were grown for 37 days at a temperature of 20℃ (24h), a humidity of 70%, and an average light intensity of 80 µmol·m-2·s-1 (photoperiod; 24h) in a container-type plant factory. Ginseng sprouts were then transferred to a custom chamber equipped with UV-A (370 nm; 12.90 W·m-2) and UV-B (300 nm; 0.31 W·m-2) LEDs and treated for 3 days. Growth parameters and ginsenoside contents in shoot and root were conducted by harvesting on days 0 (control), 1, 2, and 3 of UV treatments, respectively. The growth parameters showed non-significant differences between the control and the UV treatments (wavelengths or the number of days). Ginsenoside contents of the shoot was highly improved by 186% in UV-A treatment compared to the control in 3 days of the treatment time. The ginsenoside contents of the roots was more improved in UV-A 1-day treatment and UV-B 3-day treatment, compared to the control by 171% and 160%, respectively. As a result of this experiment, it is thought that UV LED irradiation before harvesting can produce sprout ginseng with high ginsenoside contents in a plant factory.

Development of High-Performance, Low-Cost 3D Printer Using LCD and UV-LED (LCD와 UV-LED 를 사용한 고성능, 저비용의 3D Printer 개발)

  • Jo, Kwang Ho;Jang, Hyeon Suk;Ha, Young Myoung;Lee, Seok Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.10
    • /
    • pp.917-923
    • /
    • 2015
  • 3D Printing has a great advantage for its capabilities in manufacturing complicated structures in a reasonable manufacturing time, and thus is widely used in various fields. Due to the high cost of the equipment and material, a fairly acceptable equipment, the Projection Stereolithography Apparatus (PSLA), has been developed, using the projection pattern approach for the purpose of quick manufacturing. We evaluated its surface quality, as compared with that of other systems. The result is the development of a high-performance, low-cost 3D Printer and its operating software, using LCD and UV LED. Working materials for an optimal manufacturing are suggested in the research, along with some suggestions of basic approaches for enhancing the accuracy and quality of the manufactured structures.

The Study of $Eu^{2+}$-activated Calcium Aluminium Silicate Phosphors for White UV-LED (백색 UV-LED를 위한 $Eu^{2+}$-활성화 칼슘 알루미늄 실리케이트 형광체 연구)

  • Hwang, Jung-Ha;Jang, Bo-Yun;Park, Joo-Seok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.32-35
    • /
    • 2006
  • For the white UV-LED applications, $Eu^{2+}$-activated calcium aluminium silicate phosphors were synthesized for the first time and the structures and luminescence characteristics of these phosphors were investigated. The phosphors in this study emitted blue. green or blue-green light depending on the starting materials for synthesis. In addition, the structure was also changed when the different starting materials were used. When CaO and $CaCO_3$ was used as a starting material. tetragonal $Ca_2Al_2SiO_7$ was formed and blue-green and pure green light was emitted. respectively. However. in the case of $CaSiO_3$, triclinic $CaAl_2Si2O_8$ was formed and only pure blue emission was detected. The maximum emission intensity was obtained from $CaAl_2Si_2O_8:Eu^{2+}$ phosphors, which intensity was about 1.4 times higher than that of YAG:$Ce^{3+}$ phosphor used for blue LED.

  • PDF