• Title/Summary/Keyword: UV-B.

Search Result 1,203, Processing Time 0.026 seconds

The Effects of W-B Radiation on Photosynthetic Electron Transport of Baney (Hondeum vulgare L) Leaves (UV-B가 보리(Hordeum vulgare L.)잎의 광합성 전자전달에 미치는 영향)

  • 박강은;정화숙
    • Journal of Environmental Science International
    • /
    • v.6 no.4
    • /
    • pp.369-378
    • /
    • 1997
  • The effects of various intensity of W-B on barley seeding were investigated by PS I and II activities and chlorophyll fluorescence. The Inhibitory effect of UV-B radiation on electron transport activity was Increased as the intensity of UV-B Irradiation was increased. Especially, PS I is more sensitive to UV-B radiation than PS I is. By the addition of uncle electron donor, DPC, to the chloroplasts of the barley seedlings treated with UV-B, the photoreduction of DCPIP was recovered by only 1 IBI on electron transport activity. However, the activity of PS II was Inhibited by 45% by the treatment with UV-B, but recovered it only 11% by the addition of DPC. These suggest that other sites besides the oxidation site of PS II may be affected more by UV-B Irradiation. As the intensify of UV-B was Increased, Fo was Increased while Fv was decreased, and thus Fv/Fm was decreased. This means that photochemical efficiency was reduced. With this parameters, it might be that UV-B radiation affected adversely to around PS II.

  • PDF

The Inhibitory UV-B Blocking Rate of Eyeglasses Lens on the Enzymes Denaturation in Cornea (각막 내 효소의 변성을 억제하는 안경 렌즈의 UV-B 차단율)

  • Kim, So Ra;Lee, Jee Hee;Choi, Jung-Im;Park, Mijung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.3
    • /
    • pp.253-260
    • /
    • 2013
  • Purpose: To investigate the UV-B blocking rate of eyeglasses lens which can prevent enzymes denaturation in cornea. Methods: The denaturation degree of RNase A and catalase, superoxide dismutase (SOD) was determined by using Acrylamide gel electrophoresis after UV-B irradiation of 312 nm for 1, 3, 6, 24 and 96 hours. Also, the inhibitory effect of eyeglasses lens having UV-B blocking rate of 50%, 80%, 95% and 99% on the enzymes denatration was measured. Results: The denaturation of RNase A was induced by 1 hour-irradiation of UV-B. To inhibit RNase A denaturation after UV-B irradiation between 1 hour and 6 hours, UV-B blocking lens of 95% were effective. UV-B blocking lens of 99% suppressed the inhibition of RNase A denaturation after the UV-B exposure between 24 hours and 96 hours. The denaturation of catalase was not induced by 1 hourirradiation of UV-B. To inhibit enzyme denaturation after UV-B irradiation between 1 hour and 6 hours, UV-B blocking lens of 50% were effective. UV-B blocking lens of 95% suppressed the inhibition of enzyme denaturation induced by UV-B irradiation between 24 hours and 96 hours. The SOD denaturation was not induced by UV-B irradiation shorter than 6 hours exposure. The UV-B blocking lens of 50% could inhibit SOD denaturation after the UV-B irradiation for 24 hours. When SOD was exposed to UV-B for 96 hrs, SOD denaturation was inhibited by eyeglasses lens with UV blocking rate higher than 95%. Conclusions: The results demonstrated that the proper UV-B blocking rates of eyeglasses lens to inhibit the enzymes denaturatioin was different according to the types of enzymes and its inhibitory effect was effective only when eyeglasses lens had higher than certain UV-B blocking rate.

Effects of Ultraviolet-B Radiation on Growth and Photosynthesis in Cucumber Primary Leaves

  • Kim, Hyo-Jin;Kim, Tae-Yun;Hong, Jung-Hee
    • Journal of Environmental Science International
    • /
    • v.15 no.12
    • /
    • pp.1093-1101
    • /
    • 2006
  • In the present study we studied the growth, photosynthetic traits and protective mechanisms against oxidative stress in the primary loaves of cucumber (Cucumis sativus L.) seedlings with or without UV-B treatment. Cucumber seedings were irradiated with UV-B for 10 days in environment-controlled growth chambers. The primary leaves irradiated with UV-B showed reduction in leaf length and decreased biomass production. The reduced biomass production seemed to be due to a negative effect of UV-B radiation on the photosynthetic process. Changes in chemical properties of leaf, such as chi a/b ratio affected photosynthesis. UV-B significantly affected chl b content compared with chi a in the light harvesting complex resulting reduced photosynthetic activity Fv/Fm decreased with an UV-B stress, suggesting that the photosynthetic apparatus, and particularly, PS II was damaged under UV-B stress. Malondialdehyde(MDA) concentration which represents the state of membrane lipid peroxidation Increased significantly under UV-B stress confirming an oxidative stress. UV-B exposure with SA solution(0.1-1.0 mM) can partially ameliorated some of the detrimental effects of UV-B stress. Leaf injuries including loss of chlorophyll and decreased ratio of Fv/Fm were reduced with combined application of UV-B and SA. ABA and JA showed similar mode of action in physiological effects on photosynthetic activities though the levels were lower than those from SA treated plants. Chloroplast ultrastructure was also affected by UV-B exposure. The thickness of leaf tissue components decreased and the number of grana and thylakoids was reduced in chloroplast applied UV-B or SA alone. At combined stress granal and stromal thylakoids were less affected. The leaves under combined stress acquired a significant tolerance to oxidative stress. From these results, it can be suggested that SA may have involved a protective role against UV-B induced oxidative damage.

콩[Glycine max(L.) Merrill] 품종간의 UV-B에 대한 감수성의 차이

  • 김학윤;이천호
    • Journal of Environmental Science International
    • /
    • v.7 no.4
    • /
    • pp.487-492
    • /
    • 1998
  • The experiment was conducted to determine the effects of enhanced UV-B on growth and differential responses among cultivars in soybean. The soybean cultivars subjected to enhanced UV-B irradiation at daily dose of 11.32 kJ $m^{-2}(UV-B_{BE})$ revealed that the growth was significantly depressed. Plant height, leaf number, leaf area and dry weight were inhibited by UV-B irradiation showing differential responses among cultivars used. Danyeubkong seems to be less sensitive to the enhanced W-B irradiation, while Keunolkong more sensitive. Reduction of chlorophyll content was also found significantly greater to Keunolkong. Specific leaf weight an index of leaf thickness, and flavonoid content known as UV-absorbing compounds were significantly Increased in Danyeubkong by UV-B, but those In the other cultivars were not significantly affected. The results indicated that there are cultivar diferences in tile growth and phisiological responses to the enhanced UV-B irradiation and specific leaf weight and UV-absorbing compounds in the leaves were highly related to the sensitivity of soybean by UV-B irradiation.

  • PDF

Effects of UV-B and Growth Inhibitor on Overgrowth Retardation and Growth and ield after Planting in Fruit-Vegetable Plug Seedlings (UV-B와 생장억제제 처리가 과채류 플러그 묘의 도장 억제와 정식 후 생육 및 수량에 미치는 영향)

  • Kwon, Joon-Kook;Lee, Jae-Han;Choi, Young-Ha;Yu, In-Ho;Hwang, Gab-Choon
    • Journal of Bio-Environment Control
    • /
    • v.12 no.4
    • /
    • pp.252-258
    • /
    • 2003
  • This experiment was performed to investigate the effect of UV-B (4 kJ${\cdot}m^{-2}{\cdot}d^{-1}$) irradiation and growth inhibitor (50 mg${\cdot}L^{-1}$ diniconazole, 500 mg${\cdot}L^{-1}$) treatment on the overgrowth retardation and the growth and yield afterplanting in plug-grown cucumber, tomato, and hot pepper sedlings. Stem length of UV-B-irradiated and iniconazole-treated seedlings was shortened by 38 and 35%^ in cucumber, 37 and 41% in tomato, and 23 and 23% in hot pepper, respectively, compared with non-treated seedlings. While retarding effect ofhexaconazole waslower that that of UV-B or diniconazle. Leaf area and dry weight alson decreased but ldaf thickness increased in UV-B irradiated or growth-inhibitor-treated seedlings. Even thouth the plant height and leaf area of UV-B-irradiated seedlings ant seedling stage were shorter and smaller that those ofnon-treatedd seedlings, they were recovered to the similar level to the growth of non-treated seedlings 20to 30days after trasplantin. The diconazole-and hexaconazole-treated seedlings were delayed recovery to their normal growth, Fruit yiedl of UV-V-irradiated hot pepper and tomato slightly increased but UV-B irradiated cucumer had similar yield to growth-inhibitor-treated one. It suggested that the use of UV-B irradiation could become a reliable tool of overgrowth retardation of plug-grown vegetable seedlings in greenhouse.

Effects of Different UV-B Levels on Growth, Antioxidant Contents and Activities of Related Enzymes in Cucumber(Cucumis sativus L.). (UV-B 강도 변화가 오이의 생장 및 항산화 물질 함량과 관련 효소의 활성에 미치는 영향)

  • Kim, Hak-Yoon;Shin, Dong-Hyun;Kim, Kil-Ung
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.4
    • /
    • pp.309-313
    • /
    • 2000
  • To investigate the effects of different UV-B levels on growth and biochemical defense response in plants, cucumber plants were subjected to three levels of biologically effective ultraviolet-B $(UV-B_{BE})$ radiation [daily dose: 0.03 (No), 6.40 (Low) and $11.30\;(High)\;kJ{\cdot}m^{-2}$, $UV-B_{BE}$] in the growth chambers for 3 weeks during the early growth period. Enhanced UV-B radiation drastically decreased both dry weight and leaf area of cucumber. With increasing UV-B intensity, chlorophyll content was decreased, however the level of malondialdehyde was highly increased linearly. Total contents of ascorbic acid and glutathione were tended to increase by UV-B, while the ratios of dehydroascorbate/ascorbate and oxidized glutathione/reduced glutathione were significantly increased with increasing UV-B intensity in cucumber. All the enzyme activities investigated (superoxide dismutase, ascorbate peroxidase, dehydroascorbate reductase, guaiacol peroxidase etc.) in cucumber were increased by the UV-B enhancement. These results suggested that enhanced UV-B irradiation caused photooxidative stress in cucumber plant and resulted in significant reduction in plant growth. Biochemical protection responses might be activated to prevent the leaves from damaging effects of oxidative stress generated by UV-B irradiation.

  • PDF

Growth and Physiological Responses of Shade Intolerant and Intermediate Tree Seedlings to Enhanced UV-B Radiation (자외선(紫外線)-B 증가조사(增加照射)에 대한 양수(陽樹)와 중성수(中性樹) 유묘(幼苗)의 생장(生長)과 생리적(生理的) 반응(反應)에 관한 연구(硏究))

  • Kim, Jong Jin;Hong, Sung Gak
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.4
    • /
    • pp.469-476
    • /
    • 1999
  • This study was carried out to investigate the growth and physiological response of shade intolerant and intermediate tree seedlings to enhanced UV-$B_{BE}$(biologically effective UV-B) radiation. The seedlings of Betula platyphylla var. japonica Hara(shade intolerant species) and Fraxinus rhynchophylla Hance(shade intermediate species) were treated with one of the three levels of UV-$B_{BE}$ dosages - ambient UV-$B_{BE}$, ambient+3.2, and ambient+$5.2\;KJ\;m^{-2}day^{-1}$) for 14 weeks in the field condition. Height and root collar diameter growth, leaf area, and biomass production of the seedlings of two species were reduced by enhanced UV-B radiation. Leaf stomatal resistance to water vapor of the F. rhynchophylla seedling was increased by the UV-B increment. The reductions in total chlorophyll and carotenoid were more apparent in the F. rhynchophylla than B. platyphylla seedling. There was no statistically significant changes in the concentration of UV-B absorbing compound($A_{300}$) in the leaves of the two species among the UV-B treatment. However the $A_{300}$ tented to be increased in F. rhynchophylla by enhanced UV-B radiation. These results indicate that the growth and the physiological and biochemical responses between B. platyphylla and F. rhynchophylla were different to enhanced UV-B environment.

  • PDF

전해질 무첨가 전기/UV 공정을 이용한 염료의 제거

  • Park, Yeong-Sik;Kim, Dong-Seok
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2008.11a
    • /
    • pp.350-354
    • /
    • 2008
  • 전기/UV 공정에 사용하기 위해 일반적인 살균 램프인 UV-C 램프와 오존도 같이 발생하는 오존 등의 RhB 분해능을 고찰한 결과 오존 램프의 RhB 제거율이 UV-C램프보다 높은 것으로 나타났다. 전해질을 첨가하지 않은 전기/UV 공정에서 최적 전류는 1 A로 나타났다. 전기/UV 공정에서 RhB 제거의 경우 전기분해 공정과 UV 공정의 단일 공정의 RhB 농도감소와 전기/UV 복합 공정의 RhB 제거는 같아 공정의 시너지 효과는 관찰되지 않았다. 그러나 COD의 경우 전기분해 공정과 오존 램프에 의한 단일 공정의 COD 제거보다는 전기/UV 공정의 COD 제거농도가 높아 시너지 효과가 나타나는 것으로 사료되었다.

  • PDF

UV-B Effects on Growth and Nitrate Dynamics in Antarctic Marine Diatoms Chaetoceros neogracile and Stellarima microtrias (중파 자외선에 노출된 남극 규조 Chaetoceros neogracile와 Stellarima microtrias의 성장과 질산염 흡수량의 변화)

  • Gang, Jae Sin;Gang, Seong Ho;Lee, Yun Ho;Sim, Jeong Hui;Lee, Sang Hun
    • ALGAE
    • /
    • v.18 no.1
    • /
    • pp.13-20
    • /
    • 2003
  • Two isolated Antarctic marine diatoms, Chaetoceros neogracile VanLandingham and Stellarima microtrias (Ehrenberg) Hasle and Sims were examined to show changes of growth and uptake rate of nitrate due to UV-B irradiance. Chlorophyll (chl) a concentration was regarded as the growth index of diatom. The diatoms were treated with UV-B radiation and cultured for 4 days under cool-white fluorescent light without UV-B radiation. Two levels of UV-B exposures were applies: 1 and 6 W $m^{-2}$. Durations of UV-B treatment were 20, 40 and 60 minutes under 6 W $m^{-2}$ and 1, 2, 3, 4 and 5 hrs under 1 W $m^{-2}$. The control groups were cultured at the same time without UV-B radiation. The growth rates of two diatoms decreased under 1 and 6 W $m^{-2}$ UV-B irradiances than that of control group. After 4 days, chl a concentrations of C. neogracile were increased more than 4 times from 133 μgo$l^{-1}$ to 632 μgo$l^{-1}$ in control group. However, the concentration of experimental groups under 1 W $m^{-2}$ UV-B were only increased from 139 μgo$l^{-1}$ to 421 μgo$l^{-1}$ during one hour and the chl a concentrations were decreased from 144 μgo$l^{-1}$ to 108 μgo$l^{-1}$ during five hour. Growth of diatom dramatically more decreased under 6 W $m^{-2}$ UV-B than 1 W $m^{-2}$ UV-B. The chl a concentration of experimental groups under 6 W $m^{-2}$ UV-B for one hour was only increased from 111 μgo$l^{-1}$ to 122 μgo$l^{-1}$. In the case of S. microtrias showed also similar pattern to C. neogracile by UV-B radiation. The uptake rates of nitrate by the two strains were decreased abruptly under 6 W $m^{-2}$ UV-B irradiances. When two strains were treated under 1 and 6 W $m^{-2}$ UV-B during one hour, the strains were only continued growth and uptake of nitrate under 1 W $m^{-2}$ UV-B. This experimental evidence shows that exposure to UV-B radiation especially to high irradiance of UV-B decreases diatom survival and causes lower decrease of nutrient concentrations by microalgae in Antarctic water. Furthermore, evidence suggests that microalgal communities confined to near-surface waters in Antarctica will be harmed by increased UV-B radiation, thereby altering the dynamics of Antarctic marine ecosystems.

Removal of Rhodamine B in Water by Ultraviolet Radiation Combined with Electrolysis(II) (전기분해와 UV 조사에 의한 수중 Rhodamine B의 제거(II))

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.18 no.6
    • /
    • pp.667-674
    • /
    • 2009
  • This study has carried out to evaluate the effect of NaCI as electrolyte of single (electrolysis and UV process) and complex (electrolysis/UV) processes for the purpose of removal and mineralization of Rhodamine B (RhB) dye in water. It also evaluated the synergetic effect on the combination of electrolysis and UV process. The experimental results showed that RhB removal of UV process was decreased with increase of NaCl, while RhB removal of electrolysis and electrolysis/UV process was increased with increase of NaCI. The decolorization rate of the RhB solution in every process was more rapid than the mineralization rate identified by COD removal. The latter took longer time for further oxidation. Absorption spectra of an aqueous solution containing RhB showed a continued diminution of the RhB concentration in the bulk solution: concomitantly, no new absorption peaks appeared. This confirmed the decolorization of RhB, i.e., the breakup of the chromophores. It was observed that RhB removal in electrolysis/UV process is similar to the sum of the UV and electrolysis. However, it was found that the COD of RhB could be degraded more efficiently by the electrolysis/UV process than the sum of the two individual process. A synergetic effect was demonstrated in electrolysis/UV process.