• Title/Summary/Keyword: UV treatment

Search Result 1,308, Processing Time 0.029 seconds

Improvement of Ethanol-Tolerance of Haploid Saccharomyces diastaticus (반수체 Saccharomyces diastaticus의 에탄올내성 증진)

  • Song, Sang-Ho;Kim, Keun;Lee, Min-Woong
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.6
    • /
    • pp.584-592
    • /
    • 1994
  • Several mutation procedures have been compared to obtain an ethanol-tolerant Saccha- romyces diastaticus strain secreting glucoamylase. These procedures include spontaneous mutation, EMS treatment, UV irradiation, and combination of EMS treatment and UV irradiation. All these methods were followed by adaptation of the yeast cells to gradually higher ethanol concentration. Among these procedures, the combined method of EMS treatment and UV irradiation gave the promising result, i.e. the ethanol tolerance of the yeast increased from 11.5%(v/v) to 14.0%(v/v). Respiratory deficient petite mutants of industrial and ethanol-tolerant yeast strains have been isola- ted and hybridized with haploid S. diastaticus strains. The resulting hybrids showed increased ethanol tolerance and starch-fermentability.

  • PDF

Inactivation of Mycobacterium using Ultrasonic and Ultraviolet Sequential Processes (초음파와 자외선 연계공정을 이용한 Mycobacterium 불활성화)

  • Kim, Wangi;Jung, Yeonjung;Yoon, Yeojoon;Lim, Gwanhun;Kim, Jongbae;Kang, Joon-Wun
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.57-62
    • /
    • 2012
  • In this study, the inactivation efficiency of Mycobacterium marinum was evaluated in buffered water (pH 7) using a low pressure ultraviolet (LP-UV) lamp, ultrasonic (US), and UV/US sequential processes. In the UV alone process, 3 log inactivation of the M. marinum was achieved with a UV dose of $120mJ/cm^2$. However, a tailing phase was later observed because M. marinum has a high tendency for cell aggregation. Even though the M. marinum was not inactivated in the US alone process, the hydrophobicity decreased and turbidity increased due to the crumbling of the cell aggregation. Among the candidate processes which were UV alone, US-UV sequential process and UV-US-UV sequential process, the US-UV sequential process showed the highest synergistic effects for M. marinum inactivation. Consequently, US is a very useful process as a UV irradiation pre-treatment to inactivate M. marinum in water.

Effect of UV Irradiation on the Color and Mechanical Properties of Catechu Dyed Fabrics (자외선 조사가 아선약 염색 직물의 색상 및 역학적 특성에 미치는 영향)

  • Nam, Ki-Yeon;Lee, Jung-Soon
    • Korean Journal of Human Ecology
    • /
    • v.20 no.5
    • /
    • pp.1009-1023
    • /
    • 2011
  • This study was carried out to investigate the variations of catechu dyed fabrics under UV irradiation. Catechu dyed cotton and silk fabrics mordanted with Fe and Cu were irradiated with UV under dry and wet conditions, and then were evaluated on color changes and mechanical properties. Owing to UV irradiation, the K/S values of catechu dyed cotton fabrics increased until a certain amount of time but those of catechu-dyed silk fabrics increased continuously. Cu mordanting cotton fabrics showed the smallest changes due to the UV treatment, and silk fabrics mordanted with Fe showed the largest changes. Wetted fabrics were accelerated maillard browning by UV. Un-mordanted cotton fabrics treated with UV under dry conditions changed its YR color to Y, but changed its Y color to YR under wet conditions. However, mordanted cotton fabrics treated with UV didn't change their color. Dyed silk fabrics except those Fe mordanted and in wet conditions continued to keep their color after UV irradiation. Silk fabric mordanted with Fe under wet conditions changed its Y color to YR by UV irradiation. UV irradiation didn't affect the mechanical properties of catechu-dyed cotton and silk fabrics in any significant way.

The Study of Ag Thin Film of Suitable Anode for T-OLED: Focused on Nanotribology Methode (UV 처리에 의한 T-OLED용 산화전극에 적합한 Ag 박막연구: Nano-Mechanics 특성 분석을 중심으로)

  • Lee, Kyu Young;Kim, Soo In;Kim, Joo Young;Kwon, Ku Eun;Kang, Yong Wook;Son, Ji Won;Jeon, Jin Woong;Kim, Min Chul;Lee, Chang Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.6
    • /
    • pp.328-332
    • /
    • 2012
  • The work function of Ag (silver) is too low (~4.3 eV) to be used as an electrode of T-OLED (Top Emission Organic Light Emitting Diode). To solve this weakness, researches used plasma-, UV-, or thermal treatment on Ag films in order to increase the work function (~5.0 eV). So, most of studies have focused only on the work function of various treated Ag films, but studies focusing on nanomechanical properties were very important to investigate the efficiency and life time of T-OLED etc. In this paper, we focused on the mechanical properties of the Ag and $AgO_x$ film. The Ag was deposited on a glass substrate with the thickness of 150 nm by using rf-magnetron sputter with the power was fixed at 100 W and working pressure was 3 mTorr. The deposited Ag film was UV treated by UV lamp for several minutes (0~9 min). We measured the sheet resistance and mechanical property of the deposited film. From the experimental result, there were some differences of the sheet resistance and surface hardness of Ag thin film between short time (0~3 min) and long time UV treatment. These result presumed that the induced stress was taken place by the surface oxidation after UV treatment.

Integration of a target gene into chromosomal genome of BF-2 cells using UV-inactivated snakehead retrovirus (SnRV)

  • Kwon, Se-Ryun;Nishizawa, Toyohiko;Yoshimizu, Mamoru
    • Journal of fish pathology
    • /
    • v.22 no.3
    • /
    • pp.375-382
    • /
    • 2009
  • Integration and expression of a target gene into chromosomal genomes of host cell by retrovirus mediated gene transfer system usually require complicate and laborious procedures. In the present study, we investigate a simple method to integrate a target gene into genome of BF-2 cells using ultraviolet (UV)-inactivated snakehead retrovirus (SnRV), a fish retrovirus. First of all, an optimization of transfection condition was determined with BF-2 cells using Lipofectamine 2000 and Transome. Using 0.5 $\mu\ell$ Lipofectamine 2000 resulted in 33.8, 40.6 and 40.2% of transfection efficacy with high survival rate (minimum 80%) in 0.5, 1 and 2 $\mu{g}$ DNA, respectively, and those of Transome were all less than 5%. It was confirmed that UV-treatment for 5 min was enough to inactivate infectivity of SnRV. Next, a cassette composed of GFP (green fluorescent protein) gene flanked by LTR (long terminal repeats) sequences derived from SnRV was constructed and transfected into BF-2 cells followed by treatment with UV-inactivated SnRV for optimization of integration and expression of the cassette gene. As the results, the fluorescence was expressed in BF-2 cells treated with UV-inactivated SnRV 3 and 5 times, while there was no expression in BF-2 cells with once and non treatment. Accordingly, it was confirmed that GFP gene was integrated into chromosomal genome of BF-2 cells with UV-inactivated SnRV.

SU-8 Mold Fabrication with Low Internal Stress and High Aspect Ratio for UV LIGA Process (고 형상비 UV LIGA 공정을 위한 낮은 내부응력의 SU-8 도금틀 제작)

  • Jang, Hyeon-Gi;Kim, Yong-Gwon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.8
    • /
    • pp.598-604
    • /
    • 1999
  • This paper describes the research to minimize the film stress and maximize the aspect ratio of photoresist structure, especially about SU-8 for electroplating mold. UV LIGA process using SU-8 allows fabricating high aspect ratio polymer structures. However, it is hard to get fine patterns in the high aspect ratio structures because of high internal stress and difficulty of removing SU-8. The purpose of this paper is to setup the process condition for the obtainment of both low film stress and high aspect ratio and to find design rules that make the pattern be less dependent on stress problem. Firstly, the process of heat treatment and exposure of SU-8 are proposed. These two conditions control the amount of cross-linkage in polymer structure, which is the most important parameter of both pattern generation and remaining stress. Heat treatment is dealed with soft bake and post-exposure-bake. Temperature and time duration of each step are varied with heat treatment condition. Some test patterns are fabricated to evaluate the proposed process. Nickel electroplating is performed with the mold fabricated through the proposed process to confirm the SU-8 as a good electroplating mold.

  • PDF

Performance Study on Odor Reduction of Indole/Skatole by Composite

  • Young-Do Kim
    • Journal of Wellbeing Management and Applied Psychology
    • /
    • v.7 no.3
    • /
    • pp.67-72
    • /
    • 2024
  • This study developed a dry composite module-type deodorization facility with Twisting airflow changes and two forms (catalyst, adsorbent) within one module. Experiments were conducted to evaluate the reduction efficiency of odor substances C8H7N and C9H9N. The device combines UV oxidation using TiO2, catalytic oxidation using MnO2, and adsorption using A/C in five different methods. Data analysis of experimental results utilized the statistical package program Python 3.12. The program applied frequency analysis of odor removal efficiency, one-way ANOVA, and post-hoc tests, with statistical significance determined by p-value to ensure reliability and validity of the measurements. Results indicated that the highest removal efficiency of C8H7N and C9H9N was achieved by the UV+A/C method, suggesting the superior effectiveness and efficiency of the developed device. Combining multiple processes and technologies within one module enhanced odor treatment efficiency compared to using a single method. The device's modularity allows for flexibility in adapting to various sewage treatment scenarios, offering easy maintenance and cost-effective deodorization. This composite reaction module device can apply multiple technologies, such as biofilters, plasma, activated carbon filters, UV-photocatalysis, and electromagnetic-chemical systems. However, this study focused on UV-photocatalysis, catalysts, and activated carbon filters. Ultimately, the research demonstrates the practical applicability of this innovative device in real sewage treatment operations, showing excellent reduction efficiency and effectiveness by integrating UV oxidation, TiO2 photocatalysis, MnO2 catalytic oxidation, and A/C adsorption within a modular system.

Deterioration Mechanism of Paper according to Sizing and Beating(I)-Influences of Sizing- (사이징과 고해에 따른 종이의 열화기구(제1보)- 사이징의 영향 -)

  • 김봉용
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.2
    • /
    • pp.24-29
    • /
    • 1998
  • This study was carried out in order to elucidate the deterioration mechanism of paper according to various sizing chemicals. No additive paper and four kinds of papers containing rosin-alum, alum only, alkylketene dimer(AKD)-cation polymer and cation polymer only were treated by UV light to study changes of water-resistant, optical and mechanical properties from the view points of natural deterioration of paper. Since rosin chemicals have UV absorption at the relatively long wavelength region, rosins are degraded to form hydrophilic groups such as carboxylic acid from their double bonds by UV treatments. These phenomena caused the decreasing of sizing degree and wetting time in case of rosin-sized paper, while the UV treatments brought about the slight increase of wetting time in rosin-free papers such as no additive, alum and kymene only paper owing to the auto-sizing effect. Optical properties were primarily influenced by sizing chemicals. Rosin-sized paper showed lower brightness after UV and near UV treatment because of its UV instability.

  • PDF