• 제목/요약/키워드: UV source

검색결과 408건 처리시간 0.027초

Studies about Visible Light Distribution in PDP Cells with 3-dimesional Optical Code

  • Eom, Chul-Whan;Kang, Jung-Won
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.582-584
    • /
    • 2007
  • In order to improve the accuracy of simulated results, new UV source was designed. Previously the optical simulation was performed with the symmetric planar UV source. To design new UV source, UV distribution from the plasma fluid code was implanted to the 3-dimensional optical code to generate the visible light distribution. The results from planar UV source and new UV source were compared with the ICCD (Intensified CCD) image in real PDP cell and analyzed the variation of geometries and optical properties.

  • PDF

Multi-cube UV source 이용한 PDP에서 광학시뮬레이션의 정확성 개선에 관한 연구 (Improvement of the Accuracy of Optical Simulation Using by the Multi-cube UV Source in PDP Cells)

  • 강정원;엄철환
    • 반도체디스플레이기술학회지
    • /
    • 제6권2호
    • /
    • pp.41-44
    • /
    • 2007
  • Optical simulation of the rear and front panel geometries were needed to improve the luminance and efficiency in PDP cells. The 3-dimensional optical code can be used to analyze the variation of geometries and changing of optical properties. In order to improve the accuracy of simulated results, a new UV source, called a multi-cubes UV source, was designed. To design the source, at first UV distribution was calculated with the plasma fluid code and then the UV distribution was transformed to the multi-cube structures in the optical code. Compared to the results from existing UV source, called a planar UV source, could be improved the accuracy of visible light distribution. Simulated results were also compared to the visible distribution measured with the ICCD in a real PDP cell.

  • PDF

Optical Ozone Monitor Using UV Source

  • Chung, Wan-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.49-52
    • /
    • 2003
  • Two types of ozone monitors using UV absorption method were tried in consideration of cost of the monitor and precision in measuring. The high concentration ozone monitor for high concentration real time ozone monitoring from ozone generator was composed of a low pressure mercury lamp as UV source, a photo multiplier tube as UV detector and signal processing unit for the most part. This structure could be very useful for low price high concentration ozone monitor due to simple system structure and fairly good monitoring characteristics. The developed system showed good linear output characteristics to ozone in the measuring concentration range of 0.05 and 2 wt.%. For accuracy ambient ozone monitoring in ambient in ppm level, the system composed of a high power pulsed xenon lamp as UV source, an optical spectrometer with a high sensitivity linear CCD array as UV detector and signal processing unit in brief speaking was proposed our study for the first time in the world. The developed system showed good linearity and sensitivity in relative low measuring range between 10ppm and 10,000ppm, and showed some feasibility of high resolution ozone monitor using CCD array as photodetector.

  • PDF

UV 나노임프린트를 위한 UV 경화성 수지 개발 및 경화 특성 평가 (Development of UV curable polymer and curing characteristics estimation for UV nanoimprint)

  • 이진우;이승재;이응숙;정준호;조동우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1220-1223
    • /
    • 2003
  • The UV nanoimprint technology uses the UV light as the energy source. Because the imprint process is carried out in room temperature and low pressure, this technology has its own merits compared to the thermal nanoimprint. However, in UV nanoimprint technology, a resin which has low viscosity is essential for the improvement of accuracy. In this research, a resin (named as IMS01) which has relatively low viscosity was developed. And a measurement system was developed in order to measure the degree of cure of the resin. The measurement system which is composed of FT-IR, UV light source and optical guide can measure the degree of cure in real time. From the experimental results, it was found that the IMS01 is cured more rapidly than existing resin (PAK01).

  • PDF

Measurement of UV radiation of LED lighting

  • Ku, Seong-Mo;Im, Jong-Min;Yi, Chin-Woo
    • 조명전기설비학회논문지
    • /
    • 제25권3호
    • /
    • pp.7-14
    • /
    • 2011
  • Many countries and researchers in the lighting field have focused on the LED light source as a solution to energy savings and environmental pollution. The LED light source consumes less power, has a long life and is highly economical. It is vibration and shock-resistant, and environment friendly as well. But LED lighting has some problems. In particular, the photobiological safety of LED light sources is emerging as an issue. Ultraviolet radiation from the LED light source emitted directly to the human body over a long period of time is harmful. In this paper, UV radiation from white LED was measured. Finally, the LED light source emits UV radiation, but it is relatively small when compared to others.

실리콘 수지 TIR 선형 렌즈 제작 및 365 nm 파장대역 UV LED 조사기 광원 개발 (Fabrication of Silicone Resin TIR Linear Lens and Development of 365 nm Wavelength UV LED Light Source)

  • 성준호;유순재
    • 한국전기전자재료학회논문지
    • /
    • 제31권6호
    • /
    • pp.433-436
    • /
    • 2018
  • A total internal reflection (TIR) linear lens of size $190(W){\times}5(D){\times}2.1(H)mm^3$ has a directivity of $25^{\circ}$ and was made of a polydimethysiloxane (PDMS) silicone resin with a refractive index of 1.4 and a transmittance of 93% at 365 nm UV wavelength. A light source with a size of $190{\times}25.5mm^2$ was fabricated by installing a TIR linear lens on a chip on board (COB) type LED module mounted with a $1.1{\times}1.1mm^2$ size UV LED. The optical characteristics of the light source showed a maximum irradiation density of $3,840mW/cm^2$ at a working distance of 5 mm and a high uniformity of 91.6% over a $150{\times}25mm^2$ irradiation area. The thermal characteristics of the light source were measured at a supply current of 500 mA. The saturation temperature was reached after 30 min of operation, and measured to be $95^{\circ}C$.

UV 램프와 광섬유를 이용한 새로운 개념의 마이크로 광 조형기술의 개발 (Development of a Novel Micro-stereolithography Technology using UV Lamp and Optical Fiber)

  • 최지순;이승표;고태조;이인환
    • 한국정밀공학회지
    • /
    • 제23권12호
    • /
    • pp.117-121
    • /
    • 2006
  • Generally, micro-stereolithography technology uses laser and complex optical system as light source and light delivery system, respectively. In this research, a novel micro-stereolithography technology that uses UV lamp that is more economical than UV laser as light source and optical fiber that is simpler than previous light delivery system has been developed. Furthermore, precise control system that is composed of 3-axis linear stage and shutter has been used to fabricate truly three dimensional micro-structure. For confirming the feasibility of developed micro-stereolithography apparatus, the solidification experiments were conducted. The solidification widths and depths datum of photopolymer as varying scanning speed of the UV light have been obtained. Using developed apparatus, some micro structures were fabricated successfully.

Simulation of Low Temperature Plasmas for an Ultra Violet Light Source using Coplanar Micro Dielectric Barrier Discharges

  • Bae, Hyowon;Lee, Ho-Jun;Lee, Hae June
    • Applied Science and Convergence Technology
    • /
    • 제25권6호
    • /
    • pp.138-144
    • /
    • 2016
  • The discharge characteristics of pulse-driven coplanar micro barrier discharges for an ultraviolet (UV) light source using Ne-Xe mixture have been investigated using a two-dimensional fluid simulation at near-atmospheric pressure. The densities of electrons, the radiative excited states, the metastable excited states, and the power loss are investigated with the variations of gas pressure and the gap distance. With a fixed gap distance, the number of the radiative states $Xe^*(^3P_1)$ increases with the increasing driving voltage, but this number shows weak dependency on the gas when that pressure is over 400 Torr. However, the number of the radiative states increases with the increase of the gap distance at a fixed voltage, while the power loss decreases. Therefore, a long gap discharge has higher efficiency for UV generation than does a short gap discharge. A slight change in the electrode tilt angle enhances the number of radiative species 2 or 3 times with the same operation conditions. Therefore, the intensity and efficiency of the UV light source can be controlled independently by changing the gap distance and the electrode structure.

Photo-sintering of Silaver Nanoparticles using UV-LED

  • Lee, Jaehyeong;Kim, Minha;Kim, Donguk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.88.1-88.1
    • /
    • 2015
  • In recent printed electronics technology, Photo-Sintering, a technique for sintering materials using a light source, has attracted attention as an alternative to time-consuming high-temperature thermal processes. The key principle of this technique is the selective heating of a strongly absorbent thin film, while preventing the heating of the transparent substrate by the light source. Many recent studies have used a flash lamp as the light source, and investigated the material-dependent effect of the width or intensity of the pulsed light. However, the flash lamp for sintering is not suitable for industry yet, because of needing too high power to sinter for a large scale. In energy-saving and large-scale sintering, LED technologies would be very useful in the near future. In this work, we investigated a sintering process for silver nanoparticles using UV-LED array. Silver nanoparticles in ink were inkjet-printed on a $1{\times}1cm$ area of a PET film and photo-sintered by 365 nm UV-LED module. A sheet resistance value as low as $72.6m{\Omega}/sq$ (2.3 - 4.5 times that of bulk silver) was obtained from the UV-LED sintering at 300 mW/cm2 for 50 min.

  • PDF