• Title/Summary/Keyword: UV light source

Search Result 170, Processing Time 0.024 seconds

Nanoscale Patterning Using Femtosecond Laser and Self-assembled Monolayers (SAMs) (펨토초레이저와 자기조립박막을 이용한 나노스케일 패터닝)

  • Chang, Won-Seok;Choi, Moo-Jin;Kim, Jae-Gu;Cho, Sung-Hak;Whang, Kyung-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1270-1275
    • /
    • 2004
  • Standard positive photoresist techniques were adapted to generate nano-scale patterns of gold substrate using self-assembled monolayers (SAMs) and femtosecond laser. SAMs formed by the adsorption of alkanethiols onto gold substrate are employed as very thin photoresists, Alkanethiolates formed by the adsorption of alkanethiols are oxidized on exposure to UV light in the presence of air to alkylsulfonates. Specifically, it is known that deep UV light of wavelength less than 200nm is necessary for oxidation to occur. In this study, ultrafast laser of wavelength 800nm and pulse width 200fs is applied for photolithography. Results show that ultrafast laser of visible range wavelength can replace deep UV laser source for photo patterning using thin organic films. Femtosecond laser coupled near-field scanning optical microscopy facilitates not only the patterning of surface chemical structure, but also the creation of three-dimensional nano-scale structures by combination with suitable etching methods.

Development of HCP Device for Dye Laser Pumping Source (색소레이저 펌핑을 위한 HCP의 개발)

  • 오철한;박덕규;이성만
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.9
    • /
    • pp.375-379
    • /
    • 1986
  • The HCP(Hypocycloidal Pinch) device for plasma focus was modified for a pumping source of the dye laser, and the spectral distribution and time behavior of its light pulses were investigated by using a UV spectrometer, 70 MHz CRO and Si-PIN photodiode detector. An array of multiple stages of HCP and narrower electrode gaps were chosen in order to make a more uniform discharge along the HCP axis. The possible spectral range for the pumping of dye laser is 360-620nm, when the HCP is operated at 5-8kv of apllied voltage and 50-150Torr of Ar fill gas pressure. The rise-time and FWHM of light pulses from the HCP are 5us and 30-50us respectively when it is operated under the same conditions as above.

  • PDF

Photochemical and Thermal Reaction Mechanism for the Reaction of Carcinogenic Molecules and Food Reservatives (발암성 분자와 식품보존제의 광화학 및 열적 반응메카니즘)

  • 김민식;채기수;김갑순;성대동
    • The Korean Journal of Food And Nutrition
    • /
    • v.11 no.3
    • /
    • pp.267-271
    • /
    • 1998
  • The photochemical carcinogenic reaction mechanism and molecular carcinogenic intensity through the reaction of dibromo carbene and diazomethane with dehydroacetic acid and coumarin have been studied under the two kinds of photolysis. The reaction intensities show the degree of carcinogenic activity. Under the condition of UV/vis light source, the yield of high toxic carcinogenetic carbene intermediate is produced less than those of the laser flash photolysis.

  • PDF

Trends of Deep UV-LED Technology for the Pathogen and Biotoxin Aerosol Detection System (병원균 및 생물독소 탐지시스템을 위한 원자외선 LED 기술동향)

  • Chong, Eugene;Jeong, Young-Su;Choi, Kibong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.5
    • /
    • pp.277-284
    • /
    • 2015
  • The humans are under attack involving the hazardous environment and pathogen/biotoxin aerosol that is realistic concerned. A portable, fast, reliable, and cheap Pathogen and Biotoxin Aerosol threat Detection(PBAD) trigger is an important technology for detect-to-protect and detect-to-treat system because the man-made biological terror is a fast and lethal infection. The ultraviolet C(UVC) wavelengths light source is key issue for PBAD that is sensitive because of strong fluorescence cross section from fluorescent amino acids in proteins such as tryptophan and tyrosine. The UVC-light emitting diode(LED) is emerging light source technology as alternative to laser or lamps as they offer several advantages. This paper discussed about the design consideration of UVC-LED for the PBAD system. The UVC-LED and PBAD technology, currently available or in development, are also discussed.

Study of Europium-activated Calcium Aluminium Silicate Phosphors (유로피움-활성화 칼슘 알루미늄 실리케이트 형광체 연구)

  • Hwang, Jung-Ha;Park, Ju-Seok;Jang, Bo-Yun;Nahm, Sahn;Kim, Joon-Soo;Yu, Soon-Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.11
    • /
    • pp.1020-1024
    • /
    • 2006
  • Europium$(Eu^{2+}\;or\;Eu^{3+})$-activated calcium aluminium silicate phosphors were synthesized for the first time and the structures and luminescence characteristics of these phosphors were investigated. The phosphors in this study emitted blue, green, and even red light depending on the starting milterials and annealing conditions for synthesis. In addition, the structure was also changed when the different starting materials were used. When $CaCO_3$ was used as a starting material, tetragonal $Ca_2Al_2SiO_7$ was formed. However, pure green light was emitted when the annealing was conducted in reduced atmosphere and red one was emitted by annealing in air. In the case of $CaSiO_3$ as a starting material, triclinic $CaAl_2Si_2O_8$ was formed and only pure blue emission was observed. Moreover, this blue phosphor exhibited higher intensity than that of commercial YAG:Ce phosphor, which showed the possibility of application on the phosphor for new light source such as a UV-LED.

A Development on the Non-Photomask Plate Making Technology for Screen Printing (III) (포토마스크가 필요 없는 스크린 제판 기술 개발(III))

  • Kang, Hyo-Jin;Park, Kyoung-Jin;Kim, Sung-Bin;Nam, Su-Yong;Ahn, Byung-Hyun
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.26 no.2
    • /
    • pp.55-64
    • /
    • 2008
  • We designed a UV-LED exposure system which has 365nm dominant wavelength due to the environment-friendly and economical maskless screen plate making. And the photoresist applied on the screen stretched was exposed without mask by beam projector with UV-LED light source. Then it was developed by air spray with $1.7\;kgf/cm^2$ of injection pressure. The pencil hardness and solvent resistance of curing photoresist film were excellent as those of conventional photoresist film and the maximum resolution of line image formed by maskless screen plate making. was $100{\mu}m$, so we could establish the possibility of environment-friendly maskless screen plate making technology. But the sharpness of the patterns were ${\pm}40{\mu}m$ since the exposure system for maskless plate making has weak light intensity and the diffusion of light.

  • PDF

Effect of the Position of Azobenzene Moiety on the Light-Driven Anisotropic Actuating Behavior of Polyvinylalcohol Polymer Blend Films (아조벤젠 분자의 사슬 내 위치에 따른 고분자 블렌드 박막의 비등방성 광 변형에 관한 연구)

  • Kim, Hyong-Jun
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.65-70
    • /
    • 2012
  • Structural changing materials which can induce the physical deformation of materials are interesting research topics with various potential applications. Particularly, light among many driving mechanisms is a non-contact energy source, hence the light-responsive system can be used where non-destructive, local irradiation, and remote control is needed. Here, a mainchain azobenzene polymer is synthesized and its physical and optical properties are observed and compared to that of a polymer having a light-responsive azobenzene moiety on its side chain. Further dispersion onto polyvinylalcohol hydrogel is made and its dual stability and actuation are observed upon UV-visible light irradiation. Extended azobenzene polymer blend films show an anisotropic light-actuation with non-polarized UV light at room temperature. This physical shape change is quite reversible and occurs at lower temperature than that of any other reported systems including liquid crystalline elastomers. It is successfully demonstrated that the simple physical azobenzene/polymer blending has a very good actuation compared to that of LCEs which need an elaborate chemical design and it can be further used in the areas requiring a dimensional shape change.

A Study on the Optimization of Reflector for Reactor Using Solar $Light/TiO_2$ (태양광/$TiO_2$ 반응기용 반사판 최적화에 관한 연구)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.4 s.91
    • /
    • pp.373-380
    • /
    • 2006
  • The photocatalytic reactor using immobilized $TiO_2$ on silicone sealant was studied bench scale using solar light as the source of radiation. The influences of parameters such as shape, polishing extent and size of reflector, distance between reactor and reflector, an angle of inclination between reactor system and ground, were studies using Rhodamine B (RhB) as a model compound. respectively. The decolorization of round type among the reflector shapes was higher than that of the polygon and W type. The polishing extent of the reflector did not show the decolorization largely. The optimum size of reflector and distance between reactor and reflector were 38 cm and 6 cm, respectively.

Production of Baicalin by Cell Culture of Scutellaria baicalensis (황금의 세포배양에 의한 Baicalin 생산 연구)

  • Shin, Seung-Won;Lee, Hyun-Kyung
    • Korean Journal of Pharmacognosy
    • /
    • v.26 no.2
    • /
    • pp.159-163
    • /
    • 1995
  • Callus was derived from the leaves of Scutellaria baicalensis Georgi. The productions of baicalin in the cultivated callus under various conditions, especially, the effects of the light sources and temperature were studied. In this experiment, the callus cultivated at $25^{\circ}C$ showed higer production of baicalin than the callus cultivated at $21^{\circ}C$ and $23^{\circ}C$. The illumination of light(fluorescence and UV) accelerated generally the growth of callus and the production of baicalin during the cultivation for three weeks. But, the illumination of light more than three weeks reduced the rate of production of baicalin in the callus.

  • PDF

Application of Light-emitting-diodes to Annular-type Photocatalytic Reactor for Removal of Indoor-level Benzene and Toluene

  • Jo, Wan-Kuen;Kang, Hyun-Jung;Kim, Kun-Hwan
    • Journal of Environmental Science International
    • /
    • v.21 no.5
    • /
    • pp.563-572
    • /
    • 2012
  • Unlike water applications, the photocatalytic technique utilizing light-emitting-diodes as an alternative light source to conventional lamp has rarely been applied for low-level indoor air purification. Accordingly, this study investigated the applicability of UV-LED to annular-type photocatalytic reactor for removal of indoor-level benzene and toluene at a low concentration range associated with indoor air quality issues. The characteristics of photocatalyst was determined using an X-ray diffraction meter and a scanning electron microscope. The photocatalyst baked at $350^{\circ}C$ exhibited the highest photocatalytic degradation efficiencies(PDEs) for both benzene and toluene, and the photocatalysts baked at three higher temperatures(450, 550, and $650^{\circ}C$) did similar PDEs for these compounds. The average PDEs over a 3-h period were 81% for benzene and close to 100% for toluene regarding the photocatalyst baked at $350^{\circ}C$, whereas they were 61 and 74% for benzene and toluene, respectively, regarding the photocatalyst baked at $650^{\circ}C$. As the light intensity increased from 2.4 to 3.5 MW $cm^{-1}$, the average PDE increased from 36 to 81% and from 44% to close to 100% for benzene and toluene, respectively. In addition, as the flow rate increased from 0.1 to 0.5 L $min^{-1}$, the average PDE decreased from 81% to close to zero and from close to 100% to 7% for benzene and toluene, respectively. It was found that the annular-type photocatalytic reactor inner-inserted with UV-LEDs can effectively be applied for the decomposition of low-level benzene and toluene under the operational conditions used in this study.