• Title/Summary/Keyword: UV filter ingredients

Search Result 4, Processing Time 0.018 seconds

Survey of Preservatives and UV Filter Ingredients of Distributed Sunblock Products in Korea (국내 유통 자외선 차단 기능성화장품 중 살균보존제 및 자외선차단성분 사용실태조사)

  • Park, Jeong Hee;Kim, Jong Pil;Kim, Jin A;Seo, Kye Won;Kim, Eun Sun;Seo, Jumg Mi
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.4
    • /
    • pp.381-390
    • /
    • 2017
  • This study was conducted to determine 16 preservatives and 18 UV filter ingredients levels in 100 sunblock products. The order of detection rates of preservatives was phenoxyethanol (n=61), benzoic acid (n=19), methyl paraben (n=11), benzyl alcohol (n=8), propyl paraben (n=7). Also the order of detection rates of UV filter ingredients was titanium dioxide (n=81), ethylhexyl methoxycinnamate (n=69), zinc oxide (n=48), ethylhexyl salicylate (n=48), bis-ethylhexyloxyphenol methoxyphenyltriazine (n=44). The content of the detected preservatives and UV filter ingredients was within maximum allowed amount established by KFDA. In addition, preservatives and UV filter ingredients, which were not labeled in the products, were detected in 31 and 2 products respectively.

A Study on the Interaction with Preservatives and UV-Filters, Packaging Materials for Sunscreen Preservation (자외선차단제품의 방부력 확보를 위한 방부제와 자외선 차단제, 제품 포장재의 상관성 연구)

  • Park, Tae-Hun;Kwack, Il-Young;Jeon, Gi-Boong;Kim, Hyun-Hee;Kim, Han-Kon;Shin, Kye-Ho
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.36 no.4
    • /
    • pp.259-263
    • /
    • 2010
  • We measured and compared the partition coefficients and absorption levels of preservative phenoxyethanol (PE), antimicrobial ethylhexylglycerin (EG) and UV-filters widely used in cosmetic products and more specifically evaluated the relative absorption level of PE depending on various packaging materials. The resulting partition coefficients of 11 UV filters in relation to PE and EG displayed EG with a relatively higher partition coefficients. The partition coefficients of Tinsorb M and Solaveil CT434 were also high. Among the UV-filter ingredients with EG absorption levels exceeding 40 % were Gransil PSQ, UV Titan M 160 and Micro $TiO_2$ MT 100 TV, whereas Gransil PSQ and Scadder showed PE absorption levels above 40 %. In addition, we confirmed that PE had displayed an absorption level of 7 ~ 8 % as a result of 1 month-long exposure to packaging material polyoxymethylene. This extensive research illustrates the possibility of producing the most potent preservative contents based on studying the relative compatibility between UV-filters and preservatives and selecting the adequate preservatives to be used. Furthermore, preservative level can also decline with passage of time depending on the type of packaging material used.

Effects of Activated Carbon on the Reduction of Benzo(a)pyrene in Artemisia argyi Extract

  • Lee, Sung-Hoon
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.5
    • /
    • pp.537-544
    • /
    • 2020
  • Background and objective: Artemisia argyi has a long history as an effective treatment for various diseases. The detection of environmental pollutant benzo(a)pyrene, a known human carcinogen, in the leaves of Artemisia argyi is cause for concern. For medicinal plant extracts, both a reduction of benzo(a)pyrene as well as the maintained effectiveness of the compound are important. Therefore, in this study, we propose an optimized process for the addition and filtration of activated carbon to reduce benzo(a)pyrene and change the contents of the indicating substance(jaceosidine and eupatilin). Methods: Artemisia argyi EtOH extract containing 36 ppb of benzo(a)pyrene was added to 0.1, 0.5, 1.0, and 1.5% (w/w) of activated carbon for 120 min and filtered using an activated carbon filter 1, 2, 3, and 5 times respectively. The content of benzo(a)pyrene and indicating substances in Artemisia argyi extract were then measured with high performance liquid chromatography (fluorescence and UV detectors). Results: As the amounts of activated carbon powder and filtering cycles increased, the content of benzo(a)pyrene in the Artemisia argyi extract decreased. However, when activated carbon powder 1.5% was added to the extract, and when the activated carbon filter was filtered five times, the results were reduced by 15% and 30~40% respectively. The optimal extraction condition for reducing benzo(a)pyrene was adding 1.5% of activated carbon powder. This resulted in reducing benzo(a)pyrene by 83% and indicating substances by about 4%. Conclusions: Here we present a process for reducing benzo(a)pyrene in Artemisia argyi extract using activated carbon to reduce toxicity and minimize the loss of active ingredients. This approach has potential application within a manufacturing process of various medicinal plant extracts.

A Novel Volumetric Method for Quantitation of Titanium Dioxide in Cosmetics (용량분석법을 이용한 화장품 중 티타늄옥사이드의 정량)

  • Kim, Young-So;Kim, Boo-Min;Park, Sang-Chul;Jeong, Hye-Jin;Chang, Ih-Seop
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.4 s.54
    • /
    • pp.289-293
    • /
    • 2005
  • Nowadays there are many sun protection cosmetics including organic or inorganic UV filter as an active ingredient. Chemically stable inorganic sunsEreen agents, usually metal oxides, we widely employed in high SPF products. Titanium dioxide is one of the most frequently used inorganic UV filters. It has been used as pigments for a long period of cosmetic history. With the development of micronization techniques, it becomes possible to incorporate titanium dioxide in sunscreen formulations without whitening effect and it becomes an important research topic. However, there are very few works related to quantitations of titanium dioxide in sunscreen products. In this research, we analyzed amounts of titanium dioxide in sunscreen cosmetics by adapting redof titration, reduction of Ti(IV) to Ti(III) and reoxidation to Ti(IV). After calcification of other organic ingredients of cosmetics, titanium dioxide is dissolved by hot sulfuric acid. The dissolved Ti(IV) is reduced to the Ti(III) by adding aluminum metals. The reduced Ti(III) is titrated against a standard oxidizing agent, Fe(III) (ammonium iron(III) sulfate), with potassium thiocyanate as an indicator In order to test accuracy and applicability of the proposed method, we analyzed the amounts of titanium dioxide in four types of sunscreen cosmetics, such as cream, make-up base, foundation and powder, after adding known amounts of titanium dioxide $(1{\sim}25w/w%)$. The percent recoveries of the titanium dioxide in four types of formulations were in the range between 96 and 105%. We also analyzed 7 commercial cosmetic products labeled titanium dioxide as an ingredient and compared the results with those of obtained from ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry), one of the most powerful atomic analysis techniques. The results showed that the titrated amounts were well coincided with the analyzed amounts of titanium dioxide by ICP-AES. Although instrumental analytical methods, ICP-MS (Inductively Coupled Plasma-Mass Spectrometry) and ICP-AES, are the best for the analysis of titanium, it is hard to adopt because of their high prices for small cosmetic companies. It was found that the volumetric method presented here gat e quantitative and reliable results with routine lab-wares and chemicals.