• Title/Summary/Keyword: UV curing resin

Search Result 73, Processing Time 0.031 seconds

Study on the Curing Properties of Photo-curable Acrylate Resins (광경화성 아크릴 수지의 경화특성에 관한 연구)

  • Kim, Sung-Hyun;Chang, Hyun-Suk;Park, Sun-Hee;Song, Ki-Gook
    • Polymer(Korea)
    • /
    • v.34 no.5
    • /
    • pp.469-473
    • /
    • 2010
  • The curing mechanism and characteristics of UV curable acrylate resins were studied using Photo-DSC, FTIR, and Raman spectroscopy. Effects of chemical structures of acrylate, numbers of functional group, and UV intensity on curing kinetics were investigated with Photo-DSC. FTIR and Raman spectroscopy has been used to understand curing mechanisms and reaction conversion. In order to investigate the effect of oxygen on the photo-curing reaction, the curing process was compared between the acrylate and thiol-ene resins. The reaction conversion was found to be less than 80% for acrylate resins. The photo-curing reaction of the acrylate resin could not proceed to the end because of oxygen which acts as a reaction inhibitor while the thiol-ene resin was hardly affected from oxygen during the curing process.

Synthesis, Curing and Properties of Silicone-Epoxies

  • Huang, Wei;Yuan, Youxue;Yu, Yunzhao
    • Journal of Adhesion and Interface
    • /
    • v.7 no.4
    • /
    • pp.39-44
    • /
    • 2006
  • A new kind of silicone-epoxy composite is reported in this research. The silicone-epoxy resin was synthesized by the hydrosilylation of tetramethycyclotetrasiloxane and 4-vinyl-1-cyclohexene 1,2-epoxy with a high reaction yield. It was found that the obtained silicone-epoxy resin shows a high reactive activity to the aluminum complex-silanol catalyst. The resin could be cured under the catalysis of $(Al(acac)_3/Ph_2Si(OH)_2$ at a concentration below 0.1 wt% to give a hard cured resin showing excellent optical clarity, UV resistance and thermal stability. It was also found that the Si-H groups facilitated the curing reaction and the silicone-epoxy resin bearing Si-H group could be cured effectively even if $Ph_2Si(OH)_2h$ was absent. Moreover, the UV resistance and thermal stability were improved significantly by the introduction of Si-H groups. This is possibly due to the reductive property of Si-H groups which can annihilate radical and peroxide effectively. This kind of silicone-containing epoxy composite might have very promising applications as optical resin, optical adhesive and encapsulation materials for electronic devices.

  • PDF

Development of Optical Illusion Design Pattern for Furniture Using a UV Curing Resin (UV 경화성 수지를 이용한 가구용 옵티컬 일루젼 디자인 패턴 개발)

  • Kim, Ki-Chul
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.1
    • /
    • pp.43-48
    • /
    • 2017
  • The design trend is changed with the times. The design trend of recent 21 century is eco-friendly design. The optical illusion design is a new trend of digital convergence era. In this study, optical illusion patterns were designed for furniture with eco-friendly UV-curable resin. The micro-patterns of optical illusion design were fabricated with the micro-mold which was mastered using a semiconductor micro-fabrication process by photolithography technique. The micro-patterns of optical illusion design were manufactured on PET film with a roll-to-roll process using a UV-curable resin. The manufactured PET film of optical illusion micro-pattern exhibits hologram effect, optical illusion effect, and texture of metal with the backside digital printing of metal tone. The furniture of new design concept so-called emotional furniture was manufactured with the various optical illusion design patterns. The optical illusion design patterns by UV mold prospect a new trend of interior design materials.

Curing characteristics of the Photocurable Resin for Fabrication of Micro-structures with overhang shape (돌출 형상을 가진 마이크로 구조물 가공을 위한 광경화성 수지의 경화 특성)

  • Jeoung M.G.;Choi J.W.;Ha Y.M.;Lee S.H.;Kim H.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.491-492
    • /
    • 2006
  • In the microstereolithography which can make 3-D microstructures, curing depth is different according to exposure energy. Curing depth has to be controlled to fabricate complex 3-D microstructures with overhang shape. It becomes increases when the exposure energy increases. And photocurable resin is cured when the exposure energy is bigger than critical energy. So optimal exposure energy has to be found to fabricate overhang structures without being gel. To make thinner layer, UV absorber is used and exposure pattern is changed. In this paper, we find curing characteristics according to exposure energy, and fabricate microstructures with overhang shape.

  • PDF

Electron Beam Curing of Hard Coating Resin for In-mold Decoration Foils (In-mold Decoration 포일에 사용되는 경질 코팅 수지의 전자빔 경화)

  • Sim, Hyun-Seog;Yun, Deok-Woo;Kim, Geon-Seok;Lee, Kwang-Hee;Lee, Byung-Cheol
    • Polymer(Korea)
    • /
    • v.35 no.2
    • /
    • pp.141-145
    • /
    • 2011
  • The electron beam (EB) induced curing of a typical resin designed for the hard coating layer of in-mold decoration foils was investigated. The samples were irradiated with different doses of EB and the curing reaction was monitored by Fourier transform infrared (FTIR) spectroscopy. The change in coating properties such as surface hardness and anti-abrasion property was studied as a function of increasing dose. The effect of the addition of nano-particles on the improvement of coating properties was also examined. It was expected that the experimental results could be used for the commercial exploitation of the EB curing system comparable to the ultraviolet (UV) curing system.

Comparative analysis of strain according to the deposition of a constant temperature water bath of a denture-base artificial tooth produced using three-dimensional printing ultraviolet-curing resin (3D 프린팅용 광경화 수지를 사용하여 제작한 의치상용 인공치아의 항온수조 침적에 따른 변형률 비교 분석)

  • Kim, Dong-Yeon;Lee, Gwang-Young;Kim, Jae-Hong;Yang, Cheon-Seung
    • Journal of Technologic Dentistry
    • /
    • v.42 no.3
    • /
    • pp.202-207
    • /
    • 2020
  • Purpose: This study is a comparative analysis of the strain according to deposition in a constant temperature water bath after manufacturing ultraviolet (UV)-cured artificial teeth. Methods: As a control group, 10 ready-made artificial teeth were selected as the first molar on the right side of the maxilla (RT group). Silicone was used as a duplicate of the artificial denture teeth. Experimental teeth were prepared in two groups using the prepared silicone mold. In the first experimental group, the UV-cured resin was injected into the negative silicone, followed by irradiation with a UV-curing machine for 5 minutes (5M group). In the second experimental group, the UV-cured resin was injected into the negative silicone, and then irradiated for 30 minutes using a UV-curing machine (30M group). The one-way ANOVA was performed, and post-test was analyzed by Tukey. Results: When immersed in a water bath for 15 days, it was found to be -0.3% in the RT group, -0.6% in the 5M group, and -0.7% in the 30M group. The results revealed -0.2% in the RT group, 0.2% in the 5M group, and -0.2% in the 30M group when they were in the bath for 30 days. Conclusion: In the water bath, the swelling was greater when deposited for 1 to 15 days, but was less when deposited for 15 to 30 days.

A Study on Properties of UV-Curing Silver Paste for Touch Panel by Photoinitiator Characteristic (광개시제 특성에 따른 터치 패널용 UV 경화형 Ag 페이스트의 물성 연구)

  • Nam, Su-Yong;Koo, Yong-Hwan;Kim, Sung-Bin
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.29 no.2
    • /
    • pp.1-13
    • /
    • 2011
  • The recent spotlight on electronic touch-screen display, a rapid breakthrough in the information society is evolving. Touch panel input device such as a keyboard or mouse without the use of, the on-screen character or a specific location or object on the person's hand touches a particular feature to identify the location of a panel is to be handled. The touch screen on the touch panel is used in the Ag paste is used mostly for low-curable paste. The thermal-curing paste according to the drying process of thermal energy consumption and improve the working environment of organic solvents have problems. In this study, Ag paste used in the non-thermal curing friendly and cost-effective UV curable paste was prepared. Current commercially available thermal-curable binder, was used instead of the flow characteristics of UV-curable oligomers and monomers with functional groups to give a single conductive Ag paste with the addition of a pattern could be formed. Ag paste as a result, thermal-curing adhesive, hardness, resistance and excellent reproduction of fine patterns and was available with screen printing environmentally friendly could see its potential as a patterning technology.

Fracture Behavior of Glass/Resin/Glass Sandwich Structures with Different Resin Thicknesses (서로 다른 레진 두께를 갖는 유리/레진/유리샌드위치 구조의 파괴거동)

  • Park, Jae-Hong;Lee, Eu-Gene;Kim, Tae-Woo;Yim, Hong-Jae;Lee, Kee-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1849-1856
    • /
    • 2010
  • Glass/resin/glass laminate structures are used in the automobile, biological, and display industries. The sandwich structures are used in the micro/nanoimprint process to fabricate a variety of functional components and devices in fields such as display, optics, MEMS, and bioindustry. In the process, micrometer- or nanometer-scale patterns are transferred onto the substrate using UV curing resins. The demodling process has an important impact on productivity. In this study, we investigated the fracture behavior of glass/resin/glass laminates fabricated via UV curing. We performed measurements of the adhesion force and the interfacial energy between the mold and resin materials using the four-point flexural test. The bending-test measurements and the load-displacement curves of the laminates indicate that the fracture behavior is influenced by the interfacial energy between the mold and resin and the resin thickness.

Analysis of Chemical and Mechanical Properties of UV Curing Resin (UV 경화 수지의 화학적 기계적 경화특성 분석)

  • Jang, Yong-Soo;Kim, Jeong-Keun;Go, Sun-Ho;Kwac, Lee-Ku
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.6
    • /
    • pp.88-95
    • /
    • 2020
  • Currently, Fiber-Reinforced Plastic (FRP) composite materials are used in many industrial fields, owing to their superior stiffness and specific strength compared to metals. However, there are issues with FRP inefficiency, due to low productivity of such materials, environmental problems they pose and long curing times needed. Trying to address these issues, research was conducted towards the development of a FRP composite material with excellent properties and short production time, introducing a curing method using a UV lamp. Four types of composite materials were prepared, cured with catalyst or UV (CZ: Catalyst + ZNT 6345, CR: Catalyst + RF 1001 MV, UVZ: Photoinitiator + ZNT 6345, and UVR: Photoinitiator + RF 1001 MV). Examination of the chemical and mechanical properties of these composites showed that UV-cured materials performed better than the catalyst-cured ones. These results indicate that the production process of FRP composite materials can be simplified by using a UV lamp for curing, resulting in composite materials with the same quality, but reduced production time by about 70% compared to currently used practices. This advancement will contribute greatly to the composite material industry.

Properties of Coating Films Synthesized from Colloidal Silica and UV-curable Acrylate resin (UV경화형 아크릴 수지와 콜로이드 실리카로 합성된 코팅막의 특성)

  • Kang, Young-Taec;Kang, Dong-Pil;Han, Dong-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.551-552
    • /
    • 2007
  • Coating films were prepared from silane-terminated Colloidal silaca(CS) and UV-curable acrylate resin. The silane-terminated CSs were synthesized from CS and methyltrimethoxysilane(MTMS) and then treated with 3-methacryloxypropyltrimethoxysilane(MAPTMS)/3-glycidoxypropyltrimethoxysilane( GPTMS)/vinyltrimethoxysilane(VTMS) by sol-gel process, respectively. The silane-terminated CS and acrylate resin were hybridized using UV-curing system. Thin films of hybrid material were prepared using spin coater on the glass. Their hardness, contact angle and transmittance improved with the addition of silane-terminated CS.

  • PDF