• Title/Summary/Keyword: UV curing adhesive

Search Result 27, Processing Time 0.024 seconds

A Study on Properties of UV-Curing Silver Paste by Dispersing Agent Characteristic (분산제 특성에 따른 UV 경화형 Ag Paste의 물성 연구)

  • Son, Min-Jeong;Nam, Su-Yong;Kim, Sung-Bin
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.30 no.2
    • /
    • pp.59-68
    • /
    • 2012
  • As one of the eletronic device industries has been developed by using a recent printing method, the consumption of Ag paste has been on the rise as well. The printing method has simple processes in comparison with other methods. Also it enables to be large-scaled and to lower price ranges. If UV curing system would be applied to the printing method, energy consumption and dangerousness from curing system can be minimized in a short period of time so that its method can be more eco-friendly. This study conducted an experiment in order to make UV curing Ag paste which is feasible to implement micro patterns with different dispersing agents. The purpose of the study is to analysis the suitable printability for micro pattern and to test dispersibility, hardening properties, conductivity and adhesive stength by measuring viscosity, TI(thixotropy index), G', G", $tan{\delta}$(G"/G') after making paste. We have experimented with four dispersing agents. After We did an analysis of characteristic of rheology, conductivity and adhesive stength, etc, We confirmed that the paste added FP 3060 has excellent dispersibility, conductivity and adhesive stength. If the paste has excellent dispersibility, we will expect that micro pattern is made by that.

Development of Solvent-Free Type for UV-Curable Silver Paste (무용제 타입 UV경화형 실버 페이스트 개발)

  • Jang, Min Yong;Nam, Hyun Jin;Nam, Su Yong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.2
    • /
    • pp.107-112
    • /
    • 2022
  • In this study, a silver paste capable of UV curing without using any solvent was developed. The viscosity and viscoelasticity of the silver paste developed as a solvent-free type were measured. And after printing the pattern by screen printing, an electrode coating film was formed by UV curing. Conductivity, pencil hardness, and adhesive force of the formed electrode coating film were evaluated. Finally, the curing characteristics of the electrode coating film were evaluated by TGA and FT-IR. Summarizing these results, in terms of conductivity, adhesion, and curing characteristics, it was found that Paste (4), that is, silver paste obtained by mixing 1.2 ㎛ spherical silver powder and 50 nm silver powder at 72:8% had the best physical properties.

A study on the curing characteristics of multi-concentrating UV-LED Curable Coating (다중 집광성 UV-LED 경화형 코팅의 경화특성에 관한 연구)

  • Jung, Chan-Gwon;Kim, Beom-Su;Park, Dae-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.339-345
    • /
    • 2018
  • We investigated the curing properties of cured coatings for a multi-focal UV-LED. The coatings are for LEDs that operate at multiple UV wavelengths, unlike conventional single-wavelength UV-LEDs. Using UV-LED light sources with wavelengths of 365, 395, 420, and 450 nm, we analyzed the optical characteristics such as the direction of light flux and light source. We also analyzed the curing characteristics at each UV-LED wavelength to optimize the LED for composite wavelengths. The curing performance state was predicted through computer simulation for when the multiple wavelengths of UV light sources are superimposed, and then actual LEDs were designed and fabricated. To improve the internal high-speed curing, a multi-spot module was fabricated, in which each LED is condensed, and multiple wavelengths are synthesized and condensed at the same position. The adhesive strength, surface hardness, and internal hardness of the curing agent were tested by varying the wavelength combination conditions. The surface hardening and internal hardening were compared and analyzed using a hardness tester and FT-IR analyzer. As a result, the characteristics of the surface and internal hardness were improved by a multi-spot method in which four wavelengths were overlapped in a UV-LED rather than a single wavelength.

Study on the Properties of UV Curing Thermal Conductive and Pressure Sensitive Adhesive Using Inorganic Fillers

  • Oh, Ji-Hwan;Choi, Jin-Yeong;Kim, Su-Hwan;Jang, Se-Hoon;Shin, Yoo-Jin;Kim, Dae-Hyun;Yoo, Hwan-Kyu;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • v.52 no.1
    • /
    • pp.22-26
    • /
    • 2017
  • The thermal conductivity and the adhesive properties were measured, after synthesis of thermal conductive composite which was obtained as a result of mixing alumina or graphite with acrylic adhesive synthesized by UV polymerization. The adhesive properties of the composite were evaluated measuring the peel strength at 180 degrees, the retention, and the initial tack;the thermal conductivity was estimated using laser flash analysis. As the filler contents increased, a decrease in peel strength and initial tack and an increase in retention and thermal conductivity were observed. When compared to alumina, the adhesion of graphite showed a dramatic decrease, whereas the thermal conductivity was further enhanced. It was found out that the small size of graphite increased the mechanical interlocking between the polymer and the filler, and it was easier for graphite to come into contact with other graphite in the matrix.

Adhesion Properties on the Molecular Weight and Various Substrates of Multi-layered Structural Acrylic Adhesive (다층구조형 아크릴 점착제의 분자량 및 피착재 종류에 따른 접착특성)

  • Kim, Dong-Bok
    • Polymer(Korea)
    • /
    • v.39 no.3
    • /
    • pp.514-521
    • /
    • 2015
  • In this study, we would like to describe peel strength and dynamic shear property on various substrates of multi-layered structural double-sided adhesive tape with or without adhesive (AD) prepared by UV curing for an automobile, construction, and display junction. According to adapt the adhesive, the peel and dynamic shear strength of adhesion tape prepared with acrylic foam or various plastic substrates increased with increasing molecular weight, however, decreased over 650000 molecular weight. The adhesion property shows high value at the thin AD layer with decreasing temperature. The interface property shows highest at MW 615000 (AD-4), and the interface junction below MW 615000 resulted to divide from acrylic foam and adhesive layer. From this study, the multi-layered structural double-sided adhesive tapes seem to be a useful for industrial area such as a low surface energy plastic material and curved substrate.

Effects of Tape Thickness and Inorganic Fillers on the Adhesion Properties of Double-sided Acrylic Adhesive Tape by Ultraviolet Curing (자외선 경화형 아크릴 양면 점착테이프의 두께 및 무기물 충전제 종류에 따른 접착특성)

  • Kim, Dong-Bok
    • Polymer(Korea)
    • /
    • v.38 no.3
    • /
    • pp.397-405
    • /
    • 2014
  • To manufacture of high-performance semi-structural double-sided adhesive tape, 2-ethylhexyl acrylate (2-EHA) and acrylic acid (AAC) were used, and the syrup was prepared by UV irradiation in this study. The effects of the thickness, various inorganic filler contents, and filler types on the semi-structural properties of acrylic double-sided adhesive tape were investigated. The peel strength increased with increasing thickness and wetting time. In case of the thin thickness (under $250{\mu}m$) with decreasing true density of inorganic filler, the peel strength increased with increasing wetting time. The initial peel strength showed a higher value at a big size of inorganic filler, and the filler's size in adhesive tapes was confirmed by SEM images. The peel strength and dynamic shear strength increased as a proportional relationship with various inorganic fillers and contents, and these inorganic fillers in $0.1{\mu}m$ thickness indicated more effect on the dynamic shear strength of double-sided adhesive tape. From these results the thin acrylic double-sided adhesive tape determined to be use for applications as a high-performance semi-structural.

A Study on Properties of UV-Curing Silver Paste for Touch Panel by Photoinitiator Characteristic (광개시제 특성에 따른 터치 패널용 UV 경화형 Ag 페이스트의 물성 연구)

  • Nam, Su-Yong;Koo, Yong-Hwan;Kim, Sung-Bin
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.29 no.2
    • /
    • pp.1-13
    • /
    • 2011
  • The recent spotlight on electronic touch-screen display, a rapid breakthrough in the information society is evolving. Touch panel input device such as a keyboard or mouse without the use of, the on-screen character or a specific location or object on the person's hand touches a particular feature to identify the location of a panel is to be handled. The touch screen on the touch panel is used in the Ag paste is used mostly for low-curable paste. The thermal-curing paste according to the drying process of thermal energy consumption and improve the working environment of organic solvents have problems. In this study, Ag paste used in the non-thermal curing friendly and cost-effective UV curable paste was prepared. Current commercially available thermal-curable binder, was used instead of the flow characteristics of UV-curable oligomers and monomers with functional groups to give a single conductive Ag paste with the addition of a pattern could be formed. Ag paste as a result, thermal-curing adhesive, hardness, resistance and excellent reproduction of fine patterns and was available with screen printing environmentally friendly could see its potential as a patterning technology.

Synthesis of Silane Group Modified Polyurethane Acrylate and Analysis of Its UV-curing Property (실란기가 도입된 폴리우레탄 아크릴레이트 합성 및 자외선 경화 특성 분석)

  • Kim, Jung Soo
    • Journal of Adhesion and Interface
    • /
    • v.22 no.3
    • /
    • pp.98-105
    • /
    • 2021
  • In this study, we prepared a silver nanoparticle transferable adhesive composition with transparency and adhesive properties using UV-curable urethane acrylate containing silane groups. The urethane-based adhesive composition was applied between the Ag/PET film in which silver nanoparticles were patterned on PET and the PC film to be transferred. Immediately after UV-curing with UV, PET was removed to complete the manufacture of Ag/PC film. UV-curable urethane acrylate containing silane groups was synthesized using polycaprolactone diol (PCL), isophrone diisocyanate (IPDI), 2-hydroxyethyl methacrylate (HEMA), and (3-aminopropyl) triethoxysilane (APTES). The silane group of APTES can improve interfacial adhesion by reacting with the specially treated silver nanoparticle surface of the Ag/PET film. In addition, we improved the adhesion between silver nanoparticle and PC film by mixing UV-curable urethane acrylate containing a silane group and a functional acrylic diluent used as a diluent. We analyzed the synthesis process of urethane acrylate using FT-IR, and compared the adhesive properties, optical properties, and transfer properties according to the molar ratio of APTES and the acrylic diluent composition. As a result, the best transfer properties were confirmed in the adhesive composition prepared under the conditions of PUA2S1_0.5.

Curing Behaviors of SEMI-IPN Structure UV-curable Pressure Sensitive Adhesive for Dicing Tape (Semi-IPN 구조를 갖는 다이싱 테이프용 자외선 경화형 점착제의 경화거동)

  • Do, Hyun-Sung;Kim, Hyun-Joong;Shim, Chang-Hoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.127-128
    • /
    • 2005
  • UV-curable pressure sensitive adhesives were prepared by blending acrylic copolymer, copolymerized with butyl acrylate (BA), acrylic acid (AA) and vinyl acetate (VAc) by solution polymerization, triethyl amine (TEA) and trimethylolpropane triacrylate (TMPTA). The PSAs were evaluated by peel strength with varying contents of TMPTA and UV dose, and also glass transition temperature($T_g$) of PSAs were measured. When exposed on UV irradiation, the PSAs showed the decreased peel strength and increased $T_g$. And following UV irradiation, the PSAs did not leave any residue on wafer after peel off PSA.

  • PDF