• Title/Summary/Keyword: UV and fluorescence detection

Search Result 60, Processing Time 0.023 seconds

Determination of Aflatoxins Using High-Performance Liquid Chromatography and Fluorescence or UV Absorbence Detection (HPLC에 의한 aflatoxin 분석법에 관한 연구 형광 및 자외선 흡광 검출의 비교)

  • 김종규;강회양;민경진
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.1
    • /
    • pp.36-44
    • /
    • 1996
  • A comparison was made of two detection methods(UV absorbence detection and fluorescence detection with pre-column derivatization, with trifluoroacetic acid) coupled with HPLC for the simultaneous determination of aflatoxin $B_1, B_2, G_1$ and $G_2$. A good separation of the four aflatoxins was achieved on a reversed-phase $C_{18}$ column (30 cm x 3.9 mm) with methanol-acetonitrile-water(20+20+60) for absorbence detection or acetonitrile-water(25+75) for fluorescence detection at the flow rate of 1.0 ml/min. The calibration graphs were linear over the ranges 100 ppb-1 ppm for $B_1/G_1$ and 30~300 ppb for $B_2/G_1$ with absorbence detection, and 1~500 ppb for $B_1/G_1$ and 0.3~150 ppb for $B_2/G_2$ with fluorescence detection. The correlation coefficients were greater than 0.94 and 0.99 for absorbance detection and for fluorescence detection, respectively. The detection limit was 100 ng for $B_1/G_1$ and 30 ng for $B_2/G_2$ with absorbence detection, and 1 ng for $B_1/G_1$ and 0.3 ng for $B_2/G_2$ with fluorescence detection. Recovery rates of aflatoxin $B_1, B_2, G_1$ and $G_2$ added to yeast-extract sucrose broth medium were 66.6%, 59.4%, 67.5% and 59.2%, respectively, for absorbence detection and 82.9%, 71.5%, 80.0% and 69.3%, respectively, for fluorescence detection. The four aflatoxins in culture medium were quantitatively detected by the two methods. The aflatoxins in the rice sample were not detected the absorbence detection method, but were below 10 ppb using the fluorescence detection method. Analysis of aflatoxins by both the absorbence and fluorescence methods coupled with HPLC showed acceptable linearity and good recovery. The absorbence detection was less timeconsuming and safer for treatment. The fluorescence detection was more elective and sensitive though elevated $B_1$ and $G_1$ contents were determined from the TFA-induced conversion of $B_1$ to $B_{2a}$ and $G_1$ to $G_{2a}$.

  • PDF

MEASUREMENT OF PESTICIDES RESIDUES USING SPECTROSCOPY ON AGRICULTURAL PRODUCTS

  • Kim, Y. W.;S. H. Noh
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.525-532
    • /
    • 2000
  • A new spectroscopic method for pesticide residues detection on agricultural products was developed. The general determination methods are high performance liquid chromatography (HPLC), gas chromatography (GC) or GC-mass spectrometry. They have provided relatively good detection limit and accuracy with complicated and time-consuming (5hrs above) procedures. In addition freshness is very important for evaluating qualities of agricultural products. This requires a simple and fast method for detection of pesticides. Reflectance, transmittance and fluorescence spectrometry of pesticides were tested using UV range because most of pesticides contain conjugation band in the molecular structures. Fluorescence spectrometry showed better sensitive to detect pesticide residues than did reflectance and transmittance spectrometry. Intensity and shape of fluorescence spectra showed different patterns with different structures of pesticides. Detection limit for fluorescence spectrometry was 0.1 ppm to 10 ppm depending on the structures of pesticides. Application of fluorescence spectrometry appears to be an easy method for detection of pesticide residues on agricultural products.

  • PDF

A study on the behavior of CF, CF2 radicals in an inductively coupled plasma using Laser Induced Fluorescence (레이저 유도 형광법을 이용한 유도 결합 플라즈마내의 CF, CF2 라디칼의 거동에 관한 연구)

  • 김정훈;이호준;황기웅;주정훈
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.1
    • /
    • pp.76-80
    • /
    • 2000
  • CF & $CF_2$ radicals in a $C_4F_8$ inductively coupled plasma were observed with laser induced fluorescence. 251.9nm UV laser was used for the $CF_2$ excitation and 265.3nm UV emitted light for the detection which has the maximum intensity among many induced fluorescence lights. In the case of CF radical detection, 232.9nm UV laser was used for the excitation and 247.6nm for the detection. $CF_2$ radical density increased toward substrate, while CF radical had its maximum at about 10nm away from the substrate. The atomic fluorine density which was studied by the actinometry increased as the position moves away from the substrate. This phenomena was thought to have a close relation with the polymer growth on the wafer. When the bias voltage increased, $CF_2$ , CF radicals decreased while the atomic fluorine increased tio some extent and then decreased, which was thought to be due to the change in the ionization and dissociation.

  • PDF

Development of a Wastewater Detection System using UV Fluorescence Reaction (자외선 형광반응을 이용한 오폐수 검출장치 개발)

  • Kim, ByoungChang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.12
    • /
    • pp.28-33
    • /
    • 2020
  • Oil-related products have provided many benefits to humanity, but are significant contributors to environmental pollution. As per the International Maritime Organization (IMO) requirements, in the future, all ships must be equipped with filtering equipment and 5ppm bilge alarms that can help remove or reduce oil products during wastewater treatment. In this study, a UV fluorescence measurement system that can detect the oil components in wastewater containing both water and oil was developed. When an excitation wavelength of 254nm was used to irradiate the wastewater, the amount of UV at a divergent wavelength of 360nm was measured to measure the contamination. Based on the measurement, it was concluded that this system is suitable for use as the 5ppm bilge alarm proposed by IMO.

A Study of Liquid Chromatographic Detection Method for Thiocarbamates by Using Photochemical Reaction (광화학 반응을 이용한 티오카바메이트류의 액체 크로마토그래피 검출법에 관한 연구)

  • Dai Woon Lee;Young Hun Park;Yong Wook Choi
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.4
    • /
    • pp.453-461
    • /
    • 1993
  • Detection method was developed using a simply designed photochemical reactor made of teflon coil and low pressure mercury lamp. This method of UV photolysis of analytes followed by UV, fluorescence and electrochemical detection was found to be useful for four thiocarbamates. Analytes eluting from the column are irradiated with a high flux of 254 nm UV light, so that they change to either fluorescent active forms or highly electrochemically sensitive products. Appling this technique to the UV detection, thiocarbamates were converted into long wavelength absorbing products upon UV irradiation. In fluorescence detector four thiocarbamates are not detected at nonirradiated condition but fluorescence signals of MPTC, CPTC photolysates are appeared after irradiation with UV light. The electrochemical detection for the determination of thiocarbamates was enhanced up to 5∼20 fold signal after UV irradiation, compared to that of the nonirradiated. The detection limit of thiocarbamates on electrochemical detector was 13.3∼0.02 ng under pH 7.0, ionic strength $0.5{\times}10^{-2}$ M, phosphate buffer solution. Adducts produced by reaction of photolysates and OPA-MERC in the reaction coil were monitored at 425 nm with fluorescence detector, and one of the photolysates was primary amine.

  • PDF

Preconcentration and Detection of Herbicides in Water by Using the On-line SPE-HPLC System and Photochemical Reaction

  • 이승호;이성광;박영훈;김현주;이대운
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.10
    • /
    • pp.1165-1171
    • /
    • 1999
  • The analysis of trace herbicides using the on-line SPE-HPLC system and a photochemical reaction was studied. 18 compounds of herbicides including eight triazines, six phenoxy acids and esters, and four other herbicides were examined. The on-line SPE-HPLC system developed for selection of eluting solvent improved chromatographic efficiency. The recoveries of herbicides were higher than 77%. With 100 mL tap water samples, the detection limits for all analytes were in the 0.1-2.3×10-10 M range. Detection was done by a UV or fluorescence spectrometer after photochemical reaction at the end of the column with 2W or 450W mercury lamp. Without a photochemical reaction, all compounds responded to 230 nm UV detector, but phenoxy acids and esters were weakly detected. However, with a photochemical reaction, these compounds were selectively detected at 320 nm wavelength of UV absorption and 400 nm emission of the fluorescence detectors. This method can be used for the analysis of environmental water containing herbicides at trace levels.

Quinine Assay with Home-Built UV-LED Fluorometer: Quantitative Analysis, Photo-Bleaching, Fluorescence Quenching, and Urine Analysis

  • Cheon, Tae-Min;Cheong, Byeong-Seo;Cho, Han-Gook;Kim, Jin-Hee;Kim, Kyoug-Soo
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.5
    • /
    • pp.577-582
    • /
    • 2012
  • Quinine quantitative analysis, photo-bleaching, fluorescence quenching, and urine analysis have been performed by means of a UV-LED fluorometer, which can be easily built and used in a high-school laboratory. The quinine detection range is estimated to be 0.05-80 ppm, enough for many classroom luminescence experiments. The quinine content in commercial tonic water is determined from the calibration curve, and UV photo-bleaching of this anti-malarial drug is demonstrated with clear wavelength dependence. Halide quenching of quinine fluorescence is also observed and the increase in quenching efficiency in the order of $Cl^-$, $Br^-$, and $I^-$ is evident. Urine analyses for the student volunteers have been carried out and the results clearly reveal excretion of the ingested quinine. The student participants are exuberant throughout the course of this study and sense the practices resourceful.

Dissolved Organic Matter (DOM) Leaching from Microplastics under UV-Irradiation and Its Fluorescence P roperties: Comparison with Natural P articles (UV 광풍화에 의한 미세플라스틱 기원 유기물 용출과 형광 특성: 자연유래 유기성 입자와의 비교)

  • Choi, Na Eun;Lee, Yun Kyung;Hur, Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.2
    • /
    • pp.72-81
    • /
    • 2022
  • Numerous studies have investigated the occurrence and fate of microplastics in the environment; however, only limited effort has been devoted to exploring the characteristics of dissolved organic matter (DOM) leached from microplastics. In microplastic (MP)-contaminated environment, MPs are typically mixed with naturally-occurring particles, which interferes with their detection in the environment. Thus, it is necessary to distinguish between the DOM leached from MPs and those leached from natural particles and also to characterize their properties. This study investigated DOM leaching behavior from MPs (polystyrene: PS, polyvinylchloride: PVC) and natural particulates (forest soil: FS, litter leaves: LL) under light, which is considered one of the main weathering processes that affect MPs in the environment. The leached DOM concentrations and fluorescence characteristics were compared under dark versus light conditions. Regardless of the origins, UV light promoted DOM release from all the particulates. More DOM was released from natural particles than from MPs under both conditions. However, the effect of promoting DOM release by UV was more pronounced for MPs than for natural particles. It was observed from fluorescence spectra that the intensity of the humic-like region was substantially reduced when MP-derived DOM was exposed to UV light, whereas the change of intensity was very little for natural particles. Under light conditions, the ratio of protein-like to humic-like fluorescence of MP-derived DOM was higher than that of DOM from natural particles. This study implies that a substantial amount of DOM could be leached from MPs even in MP-polluted environment under UV irradiation. Protein/humic fluorescence ratio could be utilized as a fast probing indicator to separate the two sources of particles under light.

Simultaneous Enantiomer Separation of α-Amino Acids and Their Esters as Fluorenylmethoxycarbonyl Derivatives under UV and Fluorescence Detection by High Performance Liquid Chromatography (고성능 액체 크로마토그래피에서 아미노산과 이들 에스테르의 플루오레닐메톡시카르보닐 유도체의 자외선과 형광 검출에서의 동시 광학분리)

  • Islam, Md. Fokhrul;Lee, Wonjae
    • KSBB Journal
    • /
    • v.30 no.4
    • /
    • pp.197-201
    • /
    • 2015
  • Liquid chromatographic enantiomer separation of ${\alpha}$-amino acids and their methyl and ethyl esters as fluorenylmethoxycarbonyl (FMOC) derivatives was performed using a recently developed chiral column (Chiralpak IE) based on polysaccharide derivative under simultaneous UV detection and fluorescence detection. The degree of enantiomer separation of ${\alpha}$-amino acid esters as FMOC derivatives is generally higher than that of the corresponding ${\alpha}$-amino acids. Especially, ${\alpha}$-amino acid methyl esters showed the greatest enantioseparation. As this method developed in this study can be applied to determine the chemical and optical purity of ${\alpha}$-amino acids and esters, it is expected to be quite useful for their chiral separation using Chiralpak IE.

Detection of Organic Halide by Using cis,cis-1,2,3,4-Tetraphenylbutadiene thin Film (cis,cis-1,2,3,4-Teteraphenylbutadiene 박막 필름을 이용한 유기 할로겐 화합물 감지)

  • Park, Jaehyun
    • Journal of Integrative Natural Science
    • /
    • v.3 no.4
    • /
    • pp.215-218
    • /
    • 2010
  • cis,cis-1,2,3,4-Tetraphenylbutadiene has been synthesized and its optical properties are investigated by using UV-Vis absorption and fluorescence spectroscopy. Thin films of tetraphenylbutadiene prepared from thin layer chromatography(TLC) displays strong luminescence and used for the detection of vapor of organic halide. Tetraphenylbutadiene shows dramatic quenching photoluminescence under exposure of chloroform vapor.