• Title/Summary/Keyword: UV absorption

Search Result 1,099, Processing Time 0.03 seconds

Isolation and Characterization of Nicotine-Degrading Bacterium Arthrobacter sp. NU11 and NU15 (니코틴 분해세균 Arthrobacter sp. NU11과 NU15의 분리 및 특성)

  • Jeong, Yeonju;Oh, Ji-Sung;Roh, Dong-Hyun
    • Korean Journal of Microbiology
    • /
    • v.50 no.1
    • /
    • pp.67-72
    • /
    • 2014
  • Minimal broth containing nicotine as a sole carbon source (MB/N) was used to isolate novel nicotine-degrading bacterial strains from tobacco plants and field soils. Comparative analysis of 16S rRNA gene sequence, phenotypic test and morphological tests showed that the position of these isolates were in the genus Arthrobacter of the family Micrococcaceae. The highest 16S rRNA gene sequence similarity of the isolate NU11 and NU15 to type strains in the genus Arthrobacter were Arthrobacter equi (98.2%) which was presumably a novel strain and Arthrobacter nicotinovorans (99.8%), respectively. Both strain NU11 and NU15 showed rod shaped, Gram-positive characteristics and catalase activity, but did not show oxidase activity. The novel strain NU11 was found to degrade efficiently nicotine in MB/N medium by the analysis of UV absorption spectra and could be used as an organism in bioremediation technique.

The structural, optical and photocatalytic properties of $TiO_2$ thin films fabricated by do magnetron sputtering (직류 마그네트론 스퍼터링법으로 제조된 $TiO_2$ 박막의 구조적, 광학적 특성 및 광촉매 효과)

  • Lim, J.M.;Yang, H.H.;Kim, Y.J.;Park, J.Y.;Jeong, W.J.;Park, G.C.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.420-423
    • /
    • 2003
  • [ $TiO_2$ ] thin films were fabricated by DC magnetron sputtering system at by controlling deposition times, ratios of $Ar:O_2$ partial presser ratio and substrate conditions. And the surface, cross-section morphology, microstructure, and composition ratio of the films were analyzed by FE-SEM, TEM and XPS. Besides, the optical absorption and transmittance of the $TiO_2$ films were measured by a UV-VIS-NIR Spectrophotometer, and photocatalytic properties were studied by G C Analyzer & Data Analysis system. As the result, when $TiO_2$ thin film was made at deposition time of 120[min] and $Ar:O_2$ ratio of 60:40, the best structural and optical properties among many thin films could be accepted. The best results of properties were as follows: thickness; $360{\sim}370[nm]$, grain size; 40[m], gap between two peak binding energy, $5.8{\pm}0.05[eV]$ ($2p_{3/2}$ peak and $2p_{1/2}$ peak of Ti was show at $458.3{\pm}0.05[eV]$ and $464.1{\pm}0.05[eV]$ respectively), binding energy; $530{\pm}0.05\;[eV]$, opticalenergy band gap; 3.4[eV].

  • PDF

Structural and Optical Properties of SnS Thin Films Deposited by RF Magnetron Sputtering (RF 마그네트론 스퍼터링법으로 제조한 SnS 박막의 구조적 및 광학적 특성)

  • Hwang, Donghyun
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.2
    • /
    • pp.126-132
    • /
    • 2018
  • SnS thin films with different substrate temperatures ($150 {\sim}300^{\circ}C$) as process parameters were grown on soda-lime glass substrates by RF magnetron sputtering. The effects of substrate temperature on the structural and optical properties of SnS thin films were investigated by X-ray diffraction (XRD), Raman spectroscopy (Raman), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), and Ultraviolet-visible-near infrared spectrophotometer (UV-Vis-NIR). All of the SnS thin films prepared at various substrate temperatures were polycrystalline orthorhombic structures with (111) planes preferentially oriented. The diffraction intensity of the (111) plane and the crystallite size were improved with increasing substrate temperature. The three major peaks (189, 222, $289cm^{-1}$) identified in Raman were exactly the same as the Raman spectra of monocrystalline SnS. From the XRD and Raman results, it was confirmed that all of the SnS thin films were formed into a single SnS phase without impurity phases such as $SnS_2$ and $Sn_2S_3$. In the optical transmittance spectrum, the critical wavelength of the absorption edge shifted to the long wavelength region as the substrate temperature increased. The optical bandgap was 1.67 eV at the substrate temperature of $150^{\circ}C$, 1.57 eV at $200^{\circ}C$, 1.50 eV at $250^{\circ}C$, and 1.44 eV at $300^{\circ}C$.

Effects of Temperature and Additives on the Thermal Stability of Glucoamylase from Aspergillus niger

  • Liu, Yang;Meng, Zhaoli;Shi, Ruilin;Zhan, Le;Hu, Wei;Xiang, Hongyu;Xie, Qiuhong
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.1
    • /
    • pp.33-43
    • /
    • 2015
  • GAM-1 and GAM-2, two themostable glucoamylases from Aspergillus niger B-30, possess different molecular masses, glycosylation, and thermal stability. In the present study, the effects of additives on the thermal inactivation of GAM-1 and GAM-2 were investigated. The half-lives of GAM-1 and GAM-2 at 70℃ were 45 and 216 min, respectively. Data obtained from fluorescence spectroscopy, circular dichroism spectroscopy, UV absorption spectroscopy, and dynamic light scattering demonstrated that during the thermal inactivation progress, combined with the loss of the helical structure and a majority of the tertiary structure, tryptophan residues were partially exposed and further led to glucoamylases aggregating. The thermal stability of GAM-1 and GAM-2 was largely improved in the presence of sorbitol and trehalose. Results from spectroscopy and Native-PAGE confirmed that sorbitol and trehalose maintained the native state of glucoamylases and prevented their thermal aggregation. The loss of hydrophobic bonding and helical structure was responsible for the decrease of glucoamylase activity. Additionally, sorbitol and trehalose significantly increased the substrate affinity and catalytic efficiency of the two glucoamylases. Our results display an insight into the thermal inactivation of glucoamylases and provide an important base for industrial applications of the thermally stable glucoamylases.

Fusarium mangiferae as New Cell Factories for Producing Silver Nanoparticles

  • Hamzah, Haider M.;Salah, Reyam F.;Maroof, Mohammed N.
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.10
    • /
    • pp.1654-1663
    • /
    • 2018
  • Finding a safe and broad-spectrum medication is a goal of scientists, pharmacists, and physicians, but developing and fabricating the right medicine can be challenging. The current study describes the formation of silver nanoparticles (AgNPs) by Fusarium mangiferae. It involves the antibiofilm activity of the nanoparticles against Staphylococcus aureus. It also involves cytotoxic effect against mammalian cell lines. Well-dispersed nanoparticles are formed by F. mangiferae. The sizes of the nanoparticles were found to range from 25 to 52 nm, and UV-Vis scan showed absorption around 416-420 nm. SEM, TEM, and AFM results displayed spherical and oval shapes. Furthermore, the FTIR histogram detected amide I and amide II compounds responsible for the stability of AgNPs in an aqueous solution. AgNPs were observed to decrease the formation of biofilm at 75% (v/v). DNA reducing, smearing, and perhaps fragmentation were noticed after treating the bacterial cells with 50% (v/v). Additionally, cell lysis was detected releasing proteins in the supernatant. It was also observed that the AgNPs have the ability to cause 59% cervical cancer cell line (HeLa) deaths at 25% (v/v), however, they showed about 31% toxicity against rat embryo fibroblast transformed cell lines (REF). The results of this study prove the efficiency of AgNPs as an antibiofilm against S. aureus, suggesting that AgNPs could be an alternative to antibiotics. It must also be emphasized that AgNPs displayed cytotoxic behavior against mammalian cell lines. Further studies are needed for assessing risk in relation to the possible benefit of prescribing AgNPs.

Identification and Partial Purification of Ethanol-Induced Hemoproteins in Human Liver (사람의 간에서 Ethanol에 의해 유발되는 hemoprotein들의 확인 및 부분정제)

  • Park, Sung-Woo;Seo, Bae-Seok;Jin, Kwang-Ho
    • Analytical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.117-124
    • /
    • 1995
  • To Purify hemoproteins showing from 218nm absorbance, crude liver extract of human with hepatocirrhosis was treated with Triton N-101. Hemoproteins were purified by modification of Mohamed's method. This crude extract was applied to Octyl-Sepharose CL-4B column and the step elution was performed with 0.06% Lubrol PX and 0.25% Lubrol PX. The absorption of effluents were examined at 418nm and two peaks were appeared(Fig. 2). Hemoproteins were purified from Hyydroxyapatite and DEAE-Sephadex A-25 columns which the first peak was applied to(Fig. 3, 4). In death with suddenly, purified hemoproteins with 62 and 45kDa were obtained from 12.5% SDS-PAGE. In death with hepatocirrhosis, purified hemoprotein with 54kDa was obtainded from 12.5% SDS-PAGE(Fig. 5). Cytochrome P450 was purified to a specific content of 20.8nmol/mg protein with a recovery of about 4.1%. Absorbance maximum of these hemoproteins were 446nm at UV spectruum(Fig. 6).

  • PDF

Characterization of Pigment-Producing Pseudoalteromonas spp. from Marine Habitats and Their Optimal Conditions for Pigment Production (해양환경에서 분리한 Pseudoalteromonas 속 균주들의 특징 및 색소 생성 최적 조건)

  • Jeong, Dong-Woo;Park, Jin-Sook
    • Journal of Life Science
    • /
    • v.18 no.12
    • /
    • pp.1752-1757
    • /
    • 2008
  • Three marine bacteria producing pigments were isolated from seawater of Jeju-Do and local solar saltern in Korea. Based on phenotypic characteristics and 16S rRNA sequence analysis, the strains were identified as Pseudoalteromonas spp., which produced red (Ju11-1), yellow (Ju14), and orange (TA20) pigments. The pigments showed UV absorption maxima at 537, 378 and 387 nm, respectively. The strains were growing well on Marine broth 2216 culture medium. The productivity of pigments reached the maximum value after 28 hours (Ju11-1, Ju14) and 24 hours (TA20) at $30^{\circ}C$, 2% NaCl and pH 6-7. The best pigment production of strains were supported by 1% of lactose (Ju11-1) and maltose (Ju14, TA20) as a carbon source and 1% of beef extract as a nitrogen source.

Solumycin : A water-soluble antifungal antibiotic from Streptomyces sp. LAM-593 (Streptomyces sp. LAM-593이 생산하는 수용성 항진균성 항생물질)

  • Yi, Dong-Heui;Park, Seung-Lim;Kwon, Tae-Jong;Chung, Ho-Kwon
    • Applied Biological Chemistry
    • /
    • v.34 no.2
    • /
    • pp.180-186
    • /
    • 1991
  • A water soluble antifungal antibiotic, Solumycin, was separated from the culture broth of Streptomyces sp. LAM-593, isolated from soil, by butanol extraction, alumina-, 1st and 2nd Sephadex LH-20 column chromatography. The substance was pale yellow crystal which gave a single spot at Rf value 0.24 with ethanol-ammonia water-water (8:1:1), 0.46 with butanol-ethanol-water (5:1:4), 0.84 with 50% methanol on silica gel TLC. It was dissolved well in water, methanol and acidic aq. butanol but not in ethanol, acetone, ethyl acetate, chloroform. acetic acid etc., and gave positive Fehling and Molish reaction. The UV spectrum in methanol showed absorption at 342, 361, 380, and 404 nm. The antibiotic was active against fungi such as Candide, Cryptococcus, Saccharomyces, Trichophyton and Trichosporon, but not to bacteria such as Bacillus, Escherichia and Staphylococcus.

  • PDF

A Study on the Development of Dance Sportswear with Cool-touch Function (냉감 기능성 댄스스포츠 웨어 개발에 관한 연구)

  • Jun, Mi-Hwa;Jang, Jeong-Ah;Koo, Young-Seok
    • Fashion & Textile Research Journal
    • /
    • v.22 no.1
    • /
    • pp.66-75
    • /
    • 2020
  • This study helps develop cool-touch functional dance sportswear. We suggest a draft design for dance sportswear that chooses appropriate cool-touch functional materials based on an investigation of the changes of body surface temperature before and after exercise, the physical properties of cool-touch materials on the market, and the preference for cooling tools. The results are as follows. First, cool-touch functional sportswear products on the market utilize materials such as PCM, Delta fabric, high gauge fabric, and ice chips as well as incorporate functions such as UV block and eyelets for enhanced breathability. Polyester and polyurethane fibers are mainly used for cool-touch functional sportswear. Second, the neck area showed the highest surface temperatures (32.7℃ and 32.1℃) before and after exercise. Body surface temperatures measured after exercise were also lower than temperatures measured before exercise when wearing dance sportswear. Third, as for the physical properties of cool-touch materials, material 1 showed amaximum drying speed (130 min), material 3 the best moisture absorption speed (122 × 132 min), and material 4 the best thermal conductivity (0.013 7 w/m·K). Fourth, a draft design for a cool-touch functional dance sportswear was suggested, including a neckband made of removable soft PVC material on the neck area and applying material 4 in F1, B4, S2 and lower arm areas and material 1 in the armpit area. Deodorant tape was also attached to the armpit area for added comfort and antibacterial deodorant effect.

Characteristics of Silicon Nanoparticles Depending on H2 Gas Flow During Nanoparticle Synthesis via CO2 Laser Pyrolysis (CO2 레이저 열분해법을 이용한 실리콘 나노입자 합성 시 H2 유량이 나노입자 특성에 미치는 영향)

  • Lee, Jae Hee;Kim, Seongbeom;Kim, Jongbok;Hwang, Taekseong;Lee, Jeong Chul
    • Korean Journal of Materials Research
    • /
    • v.23 no.5
    • /
    • pp.260-265
    • /
    • 2013
  • Silicon nanoparticle is a promising material for electronic devices, photovoltaics, and biological applications. Here, we synthesize silicon nanoparticles via $CO_2$ laser pyrolysis and study the hydrogen flow effects on the characteristics of silicon nanoparticles using high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and UV-Vis-NIR spectrophotometry. In $CO_2$ laser pyrolysis, used to synthesize the silicon nanoparticles, the wavelength of the $CO_2$ laser matches the absorption cross section of silane. Silane absorbs the $CO_2$ laser energy at a wavelength of $10.6{\mu}m$. Therefore, the laser excites silane, dissociating it to Si radical. Finally, nucleation and growth of the Si radicals generates various silicon nanoparticle. In addition, researchers can introduce hydrogen gas into silane to control the characteristics of silicon nanoparticles. Changing the hydrogen flow rate affects the nanoparticle size and crystallinity of silicon nanoparticles. Specifically, a high hydrogen flow rate produces small silicon nanoparticles and induces low crystallinity. We attribute these characteristics to the low density of the Si precursor, high hydrogen passivation probability on the surface of the silicon nanoparticles, and low reaction temperature during the synthesis.