• Title/Summary/Keyword: UV absorbance

Search Result 414, Processing Time 0.024 seconds

A Study on Coagulation Process using Zirconium Silicate as a Coagulation-aid (지르코늄 실리케이트를 응집보조제로 이용한 응집공정에 관한 연구)

  • Cho, Jae-Seung;Yoon, Tai-Il;Jeon, Yu-Jae;Cho, Kyung-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.3
    • /
    • pp.203-207
    • /
    • 2009
  • The concern of seriousness and harmful effects of environmental pollution is rising by the various water pollutions, appearances of new micro-noxious substances and increase of sustainable pollutants. The method is suggested that can effectively increase the removal of organic substances and several pollutants using a coagulation process. The experiment for characteristics of $ZrSiO_4$ (zirconium silicate) as a coagulation-aid was carried out for application to coagulation process with domestic wastewater and lake water, and the removal rate of the organic substances depending on a dosage was evaluated by PDA (Photometric Dispersion Analyzer) in this study. Zeta-potential of zirconium silicate solution was -32.22 mv at pH 7 and the lower negative(-) charge was detected in the more acidic conditions. Absorbance on $UV_{254}$ presented higher when zirconium silicate was added than in a domestic wastewater itself. Besides, the results by PDA experiment represented that injection of zirconium silicate could promote growing of floc. Tests for coagulation process were conducted by three ways which are pre-injection, co-injection and post-injection of zirconium silicate with alum. Accordingly, removal efficiency of organic substances increased over 15% in co-injection than in using of alum as a sole reagent. When a 20 mg/L of alum was used with a 10 mg/L of zirconium silicate, the removal efficiency was high up to 90%. Removal efficiency of $COD_{Cr}$ was improved more than 15% in case of dosage of coagulant either PAC (Poly aluminium chloride) or PACS (Poly aluminium chloride Silicate) together with zirconium silicate. As a result, the removal efficiency of $COD_{Cr}$ were 5~10% higher in a co-injection of zirconium silicate with a coagulant than a pre-injection and a post-injection but it of soluble substances was lower in a co-injection.

Properties of Dissolved Organic Carbon (DOC) released by Three Species of Blue- green Algae (남조류에 의해 배출된 용존유기탄소의 특성)

  • Choi, Kwang-Soon;Imai, Akio;Kim, Bom-Chul;Matsushige, Kazuo
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.1 s.93
    • /
    • pp.20-29
    • /
    • 2001
  • The amount, chemical composition and optical property of extracellular dissolved organic carbon (EOC) by phytoplankton were examined using axenic cultures of Microcystis aeruginosa, Anabaena flos-aquae, and Oscillatoria agardhii. The extracellular organic matter was categorized into five fractions (hydrophobic acids; AHSs, hydrophobic neutrals; HoNs, hydrophilic acids; HiAs, hydrophilic bases; HiBs, and hydrophilic neutrals; HiNs) using three adsorbent resins(XAD-8, cation, and anion). The release pattern and chemical composition of EOC varied with algal species and their growth phases. Percentage of extracellular release increased with age in all cultures. HiAs were the dominant component of EOC in all cultures, whereas the proportion of HiAs decreased with age in all cultures. In contrast, the proportions of HiBs and HiNs increased as cultures aged. In particular, the HiN fraction increased from 0% to 44% of EOC in M. aeruginosa and from 3.0% to 28% in A. flos-aquae, respectively. The proportion of AHSs was higher in the cultures of A. flos-aquae(7.5${\sim}$16%) and O. agardhii (8.7${\sim}$16%) than M. aeruginosa(0.2${\sim}$2.5%). The proportions of AHSs increased with culture age in M. aeruginosa and O. agardhii, but decreased in A. flos-aquae. The specific UV absorbance also varied among species; 1.9 Abs${\cdot}$cm$^{-1}$/mgC${\cdot}$L$^{-1}$ for M. aeruginosa, 3.7 Abs${\cdot}$cm$^{-1}$/mgC${\cdot}$L$^{-1}$ for A. flos-aquae, and 13.0 Abs${\cdot}$cm$^{-1}$/mgC${\cdot}$L^{-1}$ for O. agardhii. The results of this study indicates that DOC excreted by three blue-green algae differed with species and the growth phase.

  • PDF

Characterization and Volatile Flavor Components in Glutinous Rice Wines Prepared with Different Yeasts of Nuruks (누룩에서 분리한 효모를 이용한 찹쌀발효주의 이화학적 특성 및 휘발성 향기성분)

  • Kim, Hye-Ryun;Kwon, Young-Hee;Jo, Sung-Jin;Kim, Jae-Ho;Ahn, Byung-Hak
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.3
    • /
    • pp.296-301
    • /
    • 2009
  • In order to investigate the effect of different yeasts (La Parisienne (LP), Y18-2, Y54-3, Y90-2, Y90-9 and Y272-7) from nuruks on the quality of Glutinous rice wines, physicochemical properties and volatile flavor components were evaluated. Glutinous rice wines prepared with different yeasts were analyzed for ethanol, pH, total acid, amino acid, soluble solid, coloring degree, UV absorbance, reducing sugar, organic acid, free sugar and volatile compounds. After fermentation for 17 days, the ethanol contents ranged from 13.40 to 14.50%, while the total acid levels were from 0.33 to 0.44%. The amino acid contents in six samples ranged from 0.13 to 0.18%, while soluble solid contents ranged from 12.1 to $14.7^{\circ}Bx$. The glutinous rice wine prepared with LP showed the highest level of coloring degree, soluble solid and reducing sugar among six samples. Organic acid contents of the glutinous rice wine prepared with LP had the highest levels of lactic acid and acetic acid, while the glutinous rice wine prepared with Y90-9 had the highest level of succinic acid. In all glutinous rice wines tested, the most abundant free sugars were glucose followed by maltose. Volatile flavor components in the glutinous rice wines were identified by using GC-MSD. Nineteen esters, ten alcohols, eight acids, one aldehyde and one miscellaneous compound were identified in the glutinous rice wines. Using relative peak area, it was found that other than ethyl alcohol, hexadecanoic acid ethyl ester was the major component, predominantly found in the range of 2.73-10.41%. Phenylethyl alcohol, isoamyl alcohol, ethyl oleate, ethyl linoleate and tetradecanoic acid ethyl ester were some of the major volatile components present through the fermentation, respectively. Overall, it was shown that different yeast strains from nuruks greatly affected chemical and volatile characteristics of the glutinous rice wines.

Isolation and Structure Identification of Photosensitizer from Perilla frutescens Leaves Which Induces Apoptosis in U937 (들깻잎(Perilla frutescens)으로부터 U937 세포에 apoptosis를 유도하는 광과민성 물질의 분리 및 구조동정)

  • Ha, Jun Young;Kim, Mi Kyeong;Lee, Jun Young;Choi, Eun Bi;Hong, Chang Oh;Lee, Byong Won;Bae, Chang Hwan;Kim, Keun Ki
    • Journal of Life Science
    • /
    • v.25 no.1
    • /
    • pp.53-61
    • /
    • 2015
  • In this study, we tried to separate the photosensitizer that induces apoptosis of leukemia cells (U937) from perilla leaves. Perilla leaves (Perilla frutescens Britt var. japonica Hara) are a popular vegetable in Korea, being rich in vitamins (A and E), GABA, and minerals. Dried perilla leaves were extracted with methanol to separate the photosensitizer by various chromatographic techniques. The structure of the isolated compound (PL9443) was identified by 1D-NMR, 2D-NMR, and FAB-mass spectroscopy. Absorbance of the UV-Vis spectrum was highest at 410 nm and was confirmed by the 330, 410, and 668 nm. PL9443 compound was determined to be pheophorbide, an ethyl ester having a molecular weight of 620. It was identified as a derivative compound of pheophorbide structure when magnesium comes away from a porphyrin ring. Observation of morphological changes in U937 cells following cell death induced by treated PL9443 compound revealed representative phenomena of apoptosis only in light irradiation conditions (apoptotic body, vesicle formation). Results from examining the cytotoxicity of PL9443 substance against U937 cells showed that inhibition rates of the cell growth were 99.9% with the concentration of 0.32 nM PL9443. Also, the caspase-3/7 activity was 99% against U937 cells with the concentration of 0.08 nM of PL9443 substance. The result of the electrophoresis was that a DNA ladder was formed by the PL9443. The PL9443 compound is a promising lead compound as a photosensitizer for photodynamic therapy of cancer.