• Title/Summary/Keyword: UV Sensor

Search Result 240, Processing Time 0.045 seconds

Synthesis and electrochemical characterization of nano structure $CeO_2$ (나노 구조의 $CeO_2$ 합성과 전기화학적 특성 분석)

  • Cho, Min-Young;Lee, Jae-Won;Park, Sun-Min;Roh, Kwang-Chul;Choi, Heon-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.462-462
    • /
    • 2009
  • $CeO_2$는 고체 산화물 연료전지 (SOFC, soild oxide fuel cell)의 전해질 재료와 CMP(Chemical Mechanical Polishing) 슬러리 재료, 자동차의 3원 촉매, gas sensor, UV absorbent등 여러 분야에서 사용되고 있다. 본 연구에서는 위의 활용범위 외에 $CeO_2$의 구조적 안정성과 빠른 $Ce^{3+}/Ce^{4+}$의 전환 특성을 이용하여 lithium ion battery의 anode 재료로서 전기화학적 특성을 알아보고자 실험을 실시하였다. $CeO_2$ 합성에 사용되는 전구체인 cerium carbonate의 형상 및 크기, 비표면적과 같은 물리화학적 특성이 $CeO_2$ 분말의 특성에 직접적인 영향을 주기 때문에 전구체의 합성 단계에서 입자의 특성을 조절하였다. 전구체 합성의 출발원료로 cerium nitrate hexahydrate 와 ammonium carbonate를 사용하였고 반응온도 및 농도 등을 변화시켜 입자의 형상 및 결정상을 fiber형태의 orthorombic $Ce_2O(CO_3)_2{\cdot}H_2O$와 구형의 hexagonal $CeCO_3OH$의 세리아 전구체를 합성하였다. 이를 $300^{\circ}C$에서 30분 동안 하소하여 전구체의 입자형상을 유지하는 cubic $CeO_2$를 합성하고 X-ray diffraction, FE-SEM, micropore physisorption analyzer 분석을 통하여 입자의 결정상과 형상, 비표면적 등을 비교 분석하고 $Li/CeO_2$ couple의 충,방전 용량과 수명특성을 비교 분석하여 $CeO_2$의 전기화학적 특성을 알아보았다.

  • PDF

Optical properties of Al doped ZnO Nanofibers Prepared by electrospinning (전기방사를 이용한 Al이 첨가된 ZnO 나노섬유의 제조 및 광학 특성평가)

  • Song, Chan-Geun;Yoon, Jong-Won
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.5
    • /
    • pp.205-209
    • /
    • 2011
  • Zinc oxide has semi-conductivity and super conductivity characteristics. It can be used optically and is applied on many areas such as gas sensor, solar cell and optical waveguide. In this paper, to improve optical characteristics of ZnO, aluminum was added on zinc oxide. Zinc oxide and aluminum zinc oxide was fabricated as nano fiber form. ZnO solution was created by mixing poly vinyl pyrrolidone, ethyl alcohol, and zinc acetate. An Al doped ZnO was created by adding aluminum solution to ZnO sol. By applying these sols on electro spinning method, nano fibers were fabricated. These fibers are heat treated at 300, 500, and $700^{\circ}C$ degrees and were analyzed with X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) to examine the nano structures. TGA and DSC measurement was also used to measure the change of mass and calorie upon temperature change. The absorbance of ZnO and Al-doped ZnO was carried out by UV-vis measurement.

Bond Strength of TiO2 Coatings onto FTO Glass for a Dye-sensitized Solar Cell

  • Lee, Deuk Yong;Kim, Jin-Tae;Kim, Young-Hun;Lee, In-Kyu;Lee, Myung-Hyun;Kim, Bae-Yeon
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.395-401
    • /
    • 2012
  • The bond strength of three types of $TiO_2$ coatings onto fluorine-doped $SnO_2$ (FTO) glass was investigated with the aid of a tape test according to ASTM D 3359-95. Transmittance was then measured using an UV-vis spectrophotometer in the wavelength range of 300 nm to 800 nm to evaluate the extent of adhesion of $TiO_2$ nanorods/nanoparticles on FTO glass. A sharp interface between the coating layer and the substrate was observed for single $TiO_2$ coating ($TiO_2$ nanorods/FTO glass), which may be detrimental to the bonding strength. In multicoating sample ($TiO_2$ nanorod/$TiO_2$ nanoparticle/$TiO_2$ nanoparticle/FTO glass), the tape test was not performed due to severe peeling-off prior to the test. On the other hand, the dual coating sample ($TiO_2$ nanorod/$TiO_2$ nanoparticle/FTO glass) showed minimum variation of transmittance (4%) after the test, suggesting that the topcoat adheres well with the FTO substrate due to the presence of the $TiO_2$ nanoparticle buffer layer. The use of a $TiO_2$ nanorod electrode layer with good adhesion may be attributed to the excellent dye sensitized solar cell performance.

The optical properties dependent on different doping concentrations of activators Cu2+ and in ZnS:Mn,Cu,Cl phosphor (활성제 Cu2+ 및 도핑농도에 따른 ZnS:Mn,Cu,Cl 형광체의 광학적 특성)

  • Han, Sang-Do;Kwon, Ae-Kyung;Lee, Hak-Soo;Han, Chi-Hwan;Kim, Jung-Duk;Gwak, Ji-Hye
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.323-327
    • /
    • 2006
  • Manganese, copper and chlorine-doped ZnS phosphors (ZnS:Mn,Cu,Cl) were synthesized through solid-state reaction. Manganese was added in the range of amount $1.4{\sim}5.3$ mol % to ZnS phosphors containing 0.2 or 1.0 mol % of copper and a small amount of chlorine. As-synthesized phosphors showed a spherical morphology with a mean size of ${\sim}20\;{\mu}m$ and structural properties of Wurtzite, which were identified by SEM and XRD, respectively. Optical properties of ZnS:Mn,Cu,Cl synthesized with various concentrations of activators were analysed by both of PL and EL spectra. Samples mainly showing only 580 nm-orange emission by 380 nm-UV excitation gave different EL spectra of blue, green, and orange emissions at 450, 480 and 580 nm, respectively, depending on concentrations of $Cu^{2+}$ and $Mn^{2+}$.

Research of human body information interfacing with Far infrared and application to physical therapy (Far infrared를 이용한 생체정보 인터페이싱에 대한 연구)

  • Park, Rae Joon;Kim, Jae-Yoon
    • The Journal of Korean Physical Therapy
    • /
    • v.13 no.3
    • /
    • pp.509-527
    • /
    • 2001
  • The Sun's ray is composed of Infrared(49%), Visible light(40%) and Ultra violet(11%), however the ray getting to the earth is FIR(Far infrared; 60%), IR(Infrared; 20%), and UV(Ultra Violet; 20%). Human beings has utilized FIR already from time immemorial. Hershel found out Infrared for the first time. in the Industrial Revolution the Infrared and FIR had been begun to use making products. In these days, with contemporary science FIR would be begun to clear up the implication in the human body and organic compound. IR classified by wavelength three parts NlR, MIR, FIR. There is FIR which is radiated from healthy human body the wave length is 8-l4m. The human body is composed of proteins which get easily changed by a thermal factor (about 42 $^{\circ}$C over). FIR with low temperature can deeply penetrate on the human body composed things without troublesomes, since FIR has effectively operated on the human body at low temperature (35-40 $^{\circ}$C). When FlR penetrated on the human body. it would inhibit the abnormal genes and cells expression, and then information of DNA and RNA would be reexpressed for arranging DNA and RNA abnormal state. As FlR's receptors in the body, it could be presumed that N-glycosyl linkage of purine and deoxyribose, RNA splicing process, and Heat shock protein. To take the FIR which was a optimized wavewlength and strength, at first, we induced the characteristic algorithm and the computerized programing. Then we formed that the formular of optimized FIR with physical, mathematical logic and theory. especially, Plank, Kirchhoff, Wien, Stefan-Boltzmann's logic and law. In the long run, the formular was induced with integration mathematical, since we had to know the molecular wavelength. Based on the induced formular as above, we programmed the optimized FlR radiating computerized program. In this research, we designed the eletronic circuit f3r interfacing with human body to diagnosis and treatment with FIR sensor which radiated FIR wavelength optimized.

  • PDF

Study on Electrochemical Detection of Cyclodextrin-molecule Interactions for Sensor Applications (센서 응용을 위한 사이클로덱스트린-분자 상호작용의 전기화학적 검출)

  • Park, Minji;Kim, Sooyeoun;Bae, Joonwon
    • Applied Chemistry for Engineering
    • /
    • v.29 no.5
    • /
    • pp.519-523
    • /
    • 2018
  • Cyclodextrins are a class of oligosaccharides having an extremely low toxicity, so that they have been used for the formation of host-guest complexes and removal of toxic gases or molecules. In this study, the subtle phenomenon associated with the formation of host-guest complexes between cyclodextrin and toxic molecules (methyl paraben) was experimentally investigated. First, the formation of cyclodextrin-methyl paraben complexes was monitored by UV/Vis spectroscopy as a function of the cyclodextrin concentration. Secondly, the electrochemical measurement was performed with the surface engineered Au electrode having cyclodextrin molecules on the Au substrate. The sensing signal derived from the addition of methyl paraben solution into the Au surface was measured delicately. This study can be informative for future applications such as sensors.

Organopalladium(II) Complexes as Ionophores for Thiocyanate Ion-Selective Electrodes

  • Kim, Dong-Wan;Lee, So-Hyun;Kim, Jung-Hwan;Kim, Jin-Eun;Park, Jong-Keun;Kim, Jae-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.10
    • /
    • pp.2303-2308
    • /
    • 2009
  • A thiocyanate poly(vinyl chloride) (PVC) membrane electrode based on [1,2-bis(diphenylphosphino)ethane]dihalopalladium( II), [(dppe)$PdX_2$, X = Cl ($L^1$), X = I ($L^2$)] as active sensor has been developed. The diiodopalladium complex, [(dppe)$PdI_2](L^2$) displays an anti-Hofmeister selectivity sequence: $SCN^-\;>\;I^-\;>\;{ClO_4}^-\;>\;Sal^-\;>\;Br^-\;>\;{NO_2}^-\;>\;{HPO_4}^-\;>\;AcO^-\;>\;{NO_3}^-\;>\;{H_2PO_4}^-\;>\;{CO_3}^{2-}$. The electrode exhibits a Nernstian response (-59.8 mV/decade) over a wide linear concentration range of thiocyanate ($(1.0\;{\times}\;10^{-1}\;to\;5.0\;{\times}\;10^{-6}$ M), low detection limit ($(1.1\;{\times}\;10^{-6}$ M), fast response $(t_{90%}$ = 24 s), and applicability over a wide pH range (3.5∼11). Addition of anionic sites, potassium tetrakis[p-chlorophenyl] borate (KTpClPB) is shown to improve potentiometric anion selectivity, suggesting that the palladium complex may operate as a partially charged carrier-type ionophore within the polymer membrane phase. The reaction mechanism is discussed with respect to UV-Vis and IR spectroscopy. Application of the electrode to the potentiometric titration of thiocyanate ion with silver nitrate is reported.

Preparation of Mesoporous Materials and Thin Films It's Application for DNA Sensor

  • Han, Seung-Jun;Heo, Soon-Young;Park, Keun-Ho;Lee, Soo;Kim, Byung-Kwan;Kim, Jin-Heung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.345-351
    • /
    • 2004
  • Highly ordered pure-silica MCM-41 materials possessing well-defined morphology have been successfully prepared with surfactant used as a template. The fabrication of mesoporous silica has received considerable attention due to the need to develop more efficient materials' for catalysis, separations, and chemical sensing. The surface modified MCM-41 was used as anadsorbent for biomolecules. Silica-supported organic groups and DNA adsorption on surface modified MCM-41 were investigated by FT-IR and UV-Vis spectrometer, respectively. The use of MCM-41 as the modification of electrode surfaces were investigated electrochemical properties of metal mediators with biomolecules. The modified ITO electrodes increased peak currents for a redox process of $[Ru(bpy)_3]^{2+}$ relative to the bare electrode. The electrochemical detection of DNA by cyclic voltammetry when the current is saturated in the presence of the mediator appeared more sensitive due to a higher catalytic current on the MCM-41 supported electrodes modified by carboxylic acid functional groups. The carboxyl or amine groups on the surface of MCM-41 interact and react with the $-NH_2$ groups of guanine and backbone, respectively. Highly ordered mesoporous materials with organic groups could find applications as DNA sensors.

Properties and SPICE modeling for a Schottky diode fabricated on the cracked GaN epitaxial layers on (111) silicon

  • Lee, Heon-Bok;Baek, Kyong-Hum;Lee, Myung-Bok;Lee, Jung-Hee;Hahm, Sung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.96-100
    • /
    • 2005
  • The planar Schottky diodes were fabricated and modeled to probe the device applicability of the cracked GaN epitaxial layer on a (111) silicon substrate. On the unintentionally n-doped GaN grown on silicon, we deposited Ti/Al/Ni/Au as the ohmic metal and Pt as the Schottky metal. The ohmic contact achieved a minimum contact resistivity of $5.51{\times}10.5{\Omega}{\cdot}cm^{2}$ after annealing in an $N_{2}$ ambient at $700^{\circ}C$ for 30 sec. The fabricated Schottky diode exhibited the barrier height of 0.7 eV and the ideality factor was 2.4, which are significantly lower than those parameters of crack free one. But in photoresponse measurement, the diode showed the peak responsivity of 0.097 A/W at 300 nm, the cutoff at 360 nm, and UV/visible rejection ratio of about $10^{2}$. The SPICE(Simulation Program with Integrated Circuit Emphasis) simulation with a proposed model, which was composed with one Pt/GaN diode and three parasitic diodes, showed good agreement with the experiment.

The method for total organic carbon analysis employing TiO2 photocatalyst (이산화티타늄 광촉매를 이용한 총유기탄소 분석방법)

  • Park, Buem Keun;Kim, Sung Mi;Lee, Young-Jin;Paik, Jong-Hoo;Shin, Jeong Hee
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.320-325
    • /
    • 2021
  • Biochemical oxygen demand (BOD) and chemical oxygen demand (COD) methods are conventional analytical methods to analyze water quality. Both of these methods are technically indirect measurement methods, require complicated preconditions, and are time-consuming. On the other hand, the total organic carbon (TOC) method is a direct and fast measurement method which is more intuitive and accurate than the BOD and COD methods. However, general TOC analysis methods involve complicated processes and high power consumption owing to the process of phase transition from liquid to gas by a high-temperature heater. Furthermore, periodic consumables are also required for the removal of inorganic carbon (IC). Titanium dioxide (TiO2) is one of the most suitable photocatalysts for simple processes. Its usage involves low power consumption because it only reacts with the organic carbon (OC) without the requirement of any other reagents and extra processes. We investigated a TiO2 photocatalyst-based TOC analysis for simple and affordable products. TiO2-coated fiber substrate maintained under carbon included water was exposed to ultraviolet (UV) radiation of wavelength 365 nm. This method is suitable for the real-time monitoring of water pollution because of its fast reaction time. Its linear property is also sufficient to match the real value.