• Title/Summary/Keyword: UV Imprinting

Search Result 51, Processing Time 0.03 seconds

Development of Continuous UV Nano Imprinting Process Using Pattern Roll Stamper (패턴 롤 스템퍼를 이용한 연속 UV 나노 임프린팅 공정기술 개발)

  • Cha, J.;Ahn, S.;Han, J.;Bae, H.;Myoung, B.;Kang, S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.105-108
    • /
    • 2006
  • It has been issued to fabricate nano-scale patterns with large-scale in the field of digital display. Also, large-scale fabrication technology of nano pattern is very important not only for the field of digital display but also for the most of applications of the nano-scale patterns in the view of the productivity. Among the fabrication technologies, UV nano imprinting process is suitable for replicating polymeric nano-scale patterns. However, in case of conventional UV nano imprinting process using flat mold, it is not easy to replicate large areal nano patterns. Because there are several problems such as releasing, uniformity of the replica, mold fabrication and so on. In this study, to overcome the limitation of the conventional UV nano imprinting process, we proposed a continuous UV nano imprinting process using a pattern roll stamper. A pattern roll stamper that has nano-scale patterns was fabricated by attaching thin metal stamper to a roll base. A continuous UV nano imprinting system was designed and constructed. As practical examples of the process, various nano patterns with pattern size of 500, 150 and 50nm were fabricated. Finally, geometrical properties of imprinted nano patterns were measured and analyzed.

  • PDF

Study on the Formation of Residual Layer Thickness by Changing Magnitude and Period of UV Imprinting Pressure (UV임프린트 공정에서 임프린팅 가압력 및 가압시간에 따른 레진 잔막 두께형성에 대한 실험연구)

  • Shin, Dong-Hyuk;Jang, Si-Youl
    • Tribology and Lubricants
    • /
    • v.26 no.5
    • /
    • pp.297-302
    • /
    • 2010
  • This study is focused on the resin layer formation of UV imprinting process by changing imprinting pressure and period. The mold shape is made for the process of window open over the pattern transfer area and the imprinting period is assigned as the time just before the UV light curing. The residual layer is measured by changing the imprinting period and pressure magnitude, and the measured data of residual layer provides useful information for the design of the process conditions of imprinting processes.

Development of UV imprinting process for micro lens array of image sensor (UV 임프린트를 이용한 이미지 센서용 마이크로 렌즈 어레이 성형 공정 개발)

  • Lim, Ji-Seok;Kim, Seok-Min;Jeong, Gi-Bong;Kim, Hong-Min;Kang, Shin-Il
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.2
    • /
    • pp.91-95
    • /
    • 2006
  • High-density image sensors rave microlens array to improve photosensitivity. It is conventionally fabricated by reflow process. The reflow process has some weak points. UV imprinting process can be proposed as an alternative process to integrate microlens array on photodiodes. In this study, the UV imprionting process to integrate microlens array on image sensor was developed using UV transparent flexible mold and simulated image sensor substrate. The UV transparent flexible mold was fabricated by replicating master pattern using siliconacrylate photopolymer. The releasing property and shape accuacy of siliconacrylate mold was analysed. After UV imprinting process, replication quality and align accuracy was analysed.

  • PDF

Development of UV imprinting process for micro lens array of image sensor (UV 임프린트를 이용한 이미지 센서용 마이크로 렌즈 어레이 성형 공정 개발)

  • Lim, Ji-Seok;Kim, Seok-Min;Jeong, Gi-Bong;Kim, Hong-Min;Kang, Shin-Il
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.17-21
    • /
    • 2005
  • High-density image sensors have microlens array to improve photosensitivity. It is conventionally fabricated by reflow process. The reflow process has some weak points. UV imprinting process can be proposed as an alternative process to integrate microlens array on photodiodes. In this study, the UV imprionting process to integrate microlens array on image sensor was developed using W transparent flexible mold and simulated image sensor substrate. The UV transparent flexible mold was fabricated by replicating master pattern using siliconacrylate photopolymer. The releasing property and shape accuacy of siliconacrylate mold was analysed. After UV imprinting process, replication quality and align accuracy was analysed.

  • PDF

Design and fabrication of wafer scale microlens array for image sensor using UV-imprinting (UV 임프린팅을 이용한 이미지 센서용 웨이퍼 스케일 마이크로렌즈 어레이 설계 및 제작)

  • Kim, Ho-Kwan;Kim, Seok-Min;Lim, Ji-Seok;Kang, Shin-Ill
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.100-103
    • /
    • 2007
  • A microlens array has been required to improve light conversion efficiency in image sensors. A microlens array can be usually fabricated by photoresist reflow, hot-embossing, micro injection molding, and UV-imprinting. Among these processes, a UV-imprinting, which is operated at room temperature with relatively low applied pressure, can be a desirable process to integrate microlens array on image sensors, because this process provides the components with low thermal expansion, enhanced stability, and low birefringence, furthermore, it is more suitable for mass production of high quality microlens array. In this study, to analyze the optical properties of the wafer scale microlens array integrated image sensor, another wafer scale simulated image sensor chip array was designed and fabricated. An aspherical square microlens was designed and integrated on a simulated image sensor chip array using a UV-imprinting process. Finally, the optical performances were measured and analyzed.

  • PDF

Fabrication of Metallic Nano-filter Using UV-Imprinting Process (UV 임프린팅 공정을 이용한 금속막 필터제작)

  • Noh Cheol Yong;Lee Namseok;Lim Jiseok;Kim Seok-min;Kang Shinill
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.237-240
    • /
    • 2005
  • The demand of micro electrical mechanical system (MEMS) bio/chemical sensor is rapidly increasing. To prevent the contamination of sensing area, a filtration system is required in on-chip total analyzing MEMS bio/chemical sensor. A nano-filter was mainly applied in some application detecting submicron feature size bio/chemical products such as bacteria, fungi and so on. We suggested a simple nano-filter fabrication process based on replication process. The mother pattern was fabricated by holographic lithography and reactive ion etching process, and the replication process was carried out using polymer mold and UV-imprinting process. Finally the nano-filter is obtained after removing the replicated part of metal deposited replica. In this study, as a practical example of the suggested process, a nano-dot array was replicated to fabricate nano-filter fur bacteria sensor application.

  • PDF

Fabrication of a 17inch Area Size Nano-Wire Grid using Roll-to-Roll UV Nano-Imprinting Lithography (Roll-to-Roll UV 나노 임프린팅 리소그래피에 의한 대면적 17인치의 나노 와이어 그리드의 제작)

  • Huh, Jong-Wook;Nam, Su-Yong
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.29 no.3
    • /
    • pp.17-30
    • /
    • 2011
  • The polarizer is an important optical element used in a variety of applications. Nano-wire grid polarizers in the form of sub-wavelength metallic gratings are an attractive alternative to conventional polarizers, because they provide high extinction ratio. This study has been carried out to fabrication of the 17inch area size nano-wire grid polarizer(NWGP) The master for NWGPs with a pitch of 200nm and the area size $730mm{\times}450mm$ were fabricated using laser interference lithography and aluminum sputtering and wet etching. And The NWGP fabrication process was using by the Roll to-Roll UV imprinting and was applied to flexible PET film. The results were a transmission of light (Tp) 46.7%, reflectance (Rs) 40.1% and Extinction ratio of above 16 for the visible light range.

Experiment and Numerical Study on Thermal Characteristics of UV-NIL Process Considering the Cure Kinetics of Photo-polymer (레진의 경화 반응을 고려한 UV-NIL공정의 열특성에 관한 실험 및 수치해석 연구)

  • Kim, Woo-Song;Park, Gyeong-Seo;Nam, Jin-Hyun;Yim, Hong-Jae;Jang, Si-Yeol;Lee, Kee-Sung;Jeong, Jay;Lim, Si-Hyeong;Shin, Dong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1847-1850
    • /
    • 2008
  • The process conditions during ultraviolet nanoimprint lithography (UV-NIL) process such as temperature, stamping pressure, UV irradiation, etc. are effective factors for successful imprinting of complex and fine patterns. In this study, the effects of aluminum mold on the thermal characteristics of UV-NIL process were investigated through imprinting experiments and numerical simulations. The temperature of polymer resin on mold was measured to study thermal characteristics during UV curing. From the experimental and numerical results, the importance of curing reaction control for UV-NIL process was discussed for deformation characteristics.

  • PDF